搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石-碳化硅超硬复合材料的冲击强度

李媛媛 喻寅 孟川民 张陆 王涛 李永强 贺红亮 贺端威

引用本文:
Citation:

金刚石-碳化硅超硬复合材料的冲击强度

李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威

Dynamic impact strength of diamond-SiC superhard composite

Li Yuan-Yuan, Yu Yin, Meng Chuan-Min, Zhang Lu, Wang Tao, Li Yong-Qiang, He Hong-Liang, He Duan-Wei
PDF
HTML
导出引用
  • 不同于延性介质, 脆性介质的失效破坏严重制约着材料的强度. 本文采用一种定量描述脆性介质力学性质的格点-弹簧模型, 研究了金刚石-碳化硅超硬复合材料的冲击强度及其细观损伤机理, 有助于避免灾变破坏、提高冲击强度. 在模型中, 通过构建不同体积分数比的金刚石和碳化硅两相复合材料, 模拟获得了经受冲击波压缩形变后的宏观波剖面, 显示出随着金刚石颗粒含量增加, 冲击强度逐渐增大, 而后减小; 对应于这种变化, 损伤演化分析揭示出存在三种细观损伤模式, 当金刚石颗粒含量在10%—50%范围内增加时, 长距离扩展滑移带占主导; 当金刚石颗粒含量为70%时, 滑移带已由长距离扩展演化为短细滑移带, 损伤主要来自于碳化硅基体, 多数金刚石颗粒未发生损伤; 当金刚石颗粒含量超过70%的临界值后, 短细滑移带也将被强烈限制, 应力集中致使金刚石颗粒被严重损伤, 冲击强度下降. 研究结果为优化设计金刚石-碳化硅超硬复合材料以及制备新型抗冲击材料提供了物理认知.
    Unlike the ductile materials, the failure seriously limits the strength of the brittle medium. To understand the mechanism of controlling the dynamic impact strength of diamond-SiC superhard composite under shock wave compression, the numerical simulation is conducted with a lattice-spring model that can describe the mechanical properties of diamond-SiC superhard composite quantitatively. For the simulation, the diamond-SiC superhard composite is constructed by different volume content of diamond and SiC particles. The obtainted shock wave profiles indicate that the dynamic impact strength first increases and then decreases with the increase of diamond content in the sample. The analysis based on the meso-scale damage pattern reveals that such a variation of dynamic impact strength corresponds to three damage evolution modes. When the diamond content increases to a value between 10%–50% in volume percentage, the long slip bands are first dominated, and then becomes short slip bands when the diamond content is 70%, and damage happens mainly in SiC matrix whereas most of the diamond particles are not damaged. When the diamond content is above a critical value of 70% in volume percentage, even the short slip bands are limited heavily, which makes it difficult to relax the shear stress on diamond particles and causes serious damage to diamond particles, finally results in the reduction of dynamic strength.
      通信作者: 喻寅, yuyun86@caep.cn ; 贺端威, duanweihe@scu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0305900)、国家自然科学基金(批准号: 11602244, 11602245, 11772090)和冲击波物理与爆轰物理重点实验室基金(批准号: 6142A03020204, LSD-KB1805)资助的课题.
      Corresponding author: Yu Yin, yuyun86@caep.cn ; He Duan-Wei, duanweihe@scu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0305900), the National Natural Science Foundation of China (Grant Nos. 11602244, 11602245, 11772090), and the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant Nos. 6142A03020204, LSD-KB1805).
    [1]

    Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233Google Scholar

    [2]

    Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1Google Scholar

    [3]

    Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954Google Scholar

    [4]

    Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399Google Scholar

    [5]

    Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356Google Scholar

    [6]

    Lu K 2016 Nature Rev. Mater. 1 16019Google Scholar

    [7]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [8]

    Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925Google Scholar

    [9]

    Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224Google Scholar

    [10]

    Mayer G 2005 Science 310 1144Google Scholar

    [11]

    Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275Google Scholar

    [12]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003Google Scholar

    [13]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302Google Scholar

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309Google Scholar

    [15]

    Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901Google Scholar

    [16]

    Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902Google Scholar

    [17]

    Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221Google Scholar

    [18]

    Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163Google Scholar

    [19]

    Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117Google Scholar

    [20]

    Barenblatt G I 1962 Adv. Appl. Mech. 7 55Google Scholar

    [21]

    Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3

    [22]

    罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)

    [23]

    Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489Google Scholar

    [24]

    Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917Google Scholar

    [25]

    姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 物理学报 64 188301Google Scholar

    Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301Google Scholar

    [26]

    Grady D E 1998 Mech. Mater. 29 181Google Scholar

    [27]

    Eremin M O 2016 Phys. Mesomech. 19 452Google Scholar

    [28]

    Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1Google Scholar

    [29]

    Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111

    [30]

    Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16

    [31]

    Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108

    [32]

    Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83Google Scholar

    [33]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [34]

    Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484Google Scholar

  • 图 1  金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量(体积百分比) (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 红色区域表示金刚石颗粒, 蓝色区域表示碳化硅基体

    Fig. 1.  Diamond particle content in diamond-SiC superhard composites (in volume percentage): (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The red areas represent diamond particles, and the blue areas are the SiC matrix

    图 2  在1300 m/s活塞驱动下, 金刚石颗粒不同含量(体积百分比)对金刚石-碳化硅超硬复合材料冲击波剖面的影响

    Fig. 2.  Influence of diamond content (in volume percentage) on shock wave profiles of diamond-SiC superhard composite under a 1300 m/s piston driven.

    图 3  金刚石-碳化硅超硬复合材料的冲击强度随金刚石颗粒含量(体积百分比)的变化

    Fig. 3.  Dynamic strength of diamond-SiC superhard composite varies with diamond content (in volume percentage).

    图 4  在1300 m/s活塞驱动下, 金刚石-碳化硅超硬复合材料中金刚石颗粒不同含量的损伤演化特征, 其中金刚石颗粒含量(体积百分比)分别是(a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%; 黑色带状区域是扩展滑移带

    Fig. 4.  Damage evolution of diamond-SiC superhard composite with different diamond particle content in volume percentage: (a) 10%; (b) 30%; (c) 50%; (d) 70%; (e) 73%; (f) 76%. The piston velocity is 1300 m/s. The thin black lines are slip bands occurred in SiC matrix.

    图 5  在活塞速度1300 m/s驱动下, 金刚石-碳化硅复合超硬材料的损伤度随金刚石含量(体积百分比)的变化

    Fig. 5.  Damage degree of diamond-SiC superhard composite varies with diamond content (in volume percentage) under a 1300 m/s piston.

  • [1]

    Liu Y S, Hu C H, Men J, Feng W, Cheng L F, Zhang L T 2015 J. Eur. Ceram. Soc. 35 2233Google Scholar

    [2]

    Zhao Z F, Liu Y S, Feng W, Zhang Q, Cheng L F, Zhang L T 2017 Diam. Relat. Mater. 74 1Google Scholar

    [3]

    Ekimov E A, Gavriliuk A G, Palosz B, Gierlotka S, Dluzewski P, Tatianin E, Kluev Y, Naletov M, Presz A 2000 Appl. Phys. Lett. 77 954Google Scholar

    [4]

    Yang Z L, He X B, Wu M, Zhang L, Ma A, Liu R J, Hu H F, Zhang Y D, Qu X H 2013 Ceram. Int. 39 3399Google Scholar

    [5]

    Zhao Y S, Qian J, Daemen L L, Pantea C, Zhang J Z, Voronin G A, Zerda T W 2004 Appl. Phys. Lett. 84 1356Google Scholar

    [6]

    Lu K 2016 Nature Rev. Mater. 1 16019Google Scholar

    [7]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [8]

    Cheng Z, Zhou H, Lu Q, Gao H, Lu L 2018 Science 362 1925Google Scholar

    [9]

    Yang M X, Yan D S, Yuan F P, Jiang P, Ma E, Wu X L 2018 PNAS 115 7224Google Scholar

    [10]

    Mayer G 2005 Science 310 1144Google Scholar

    [11]

    Weaver J C, Milliron G W, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon W J, Swanson B, Zavattieri P, DiMasi E, Kisailus D 2012 Science 336 1275Google Scholar

    [12]

    Lian Y P, Zhang X, Liu Y 2012 Theor. Appl. Mech. Lett. 2 021003Google Scholar

    [13]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302Google Scholar

    [14]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309Google Scholar

    [15]

    Yu Y, Wang W Q, He H L, Jiang T L, Huan Q, Zhang F P, Li Y Q, Lu T C 2015 J. Appl. Phys. 117 125901Google Scholar

    [16]

    Núñez Valdez M, Umemoto K, Wentzcovitch R M 2012 Appl. Phys. Lett. 101 171902Google Scholar

    [17]

    Varshney D, Shriya S, Varshney M, Singh N, Khenata R 2015 J. Theor. Appl. Phys. 9 221Google Scholar

    [18]

    Griffith A A, Eng M V I 1921 Phil. Trans. R. Soc. Lond. A 221 163Google Scholar

    [19]

    Qu R T, Zhang Z F 2013 Sci. Rep. 3 1117Google Scholar

    [20]

    Barenblatt G I 1962 Adv. Appl. Mech. 7 55Google Scholar

    [21]

    Novikov N V, Dub S N 1991 J. Hard. Mater. 2 3

    [22]

    罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第44, 45页

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solid (Beijing: Higher Education Press) pp44, 45 (in Chinese)

    [23]

    Liu Y S, Hu C H, Feng W, Men J, Cheng L F, Zhang L T 2014 J. Eur. Ceram. Soc. 34 3489Google Scholar

    [24]

    Matthey B, Höhn S, Wolfrum A K, Mühle U, Motylenko M, Rafaja D, Michaelis A, Herrmann M 2017 J. Eur. Ceram. Soc. 37 1917Google Scholar

    [25]

    姜太龙, 喻寅, 宦强, 李永强, 贺红亮 2015 物理学报 64 188301Google Scholar

    Jiang T L, Yu Y, Huan Q, Li Y Q, He H L 2015 Acta Phys. Sin. 64 188301Google Scholar

    [26]

    Grady D E 1998 Mech. Mater. 29 181Google Scholar

    [27]

    Eremin M O 2016 Phys. Mesomech. 19 452Google Scholar

    [28]

    Lapin J, Štamborská M, Pelachová T, Bajana O 2018 Mater. Sci. Eng. A 721 1Google Scholar

    [29]

    Salamone S, Aghajanian M, Horner S E, Zheng J Q 2015 Adv. Ceram. Armor. XI 600 111

    [30]

    Lasalvia J C, Campbell J, Swab J J, Mccauley J W 2010 JOM 62 16

    [31]

    Petel O E, Ouellet S 2017 J. Appl. Phys. 122 025108

    [32]

    Petel O E, Ouellet S, Loiseau J, Frost D L, Higgins A J 2015 Int. J. Impact Eng. 85 83Google Scholar

    [33]

    Petel O E, Ouellet S, Loiseau J, Marr B J, Frost D L, Higgins A J 2013 Appl. Phys. Lett. 102 064103

    [34]

    Sun Y, Yu Z, Wang Z, Liu X 2015 Constr. Build. Mater. 96 484Google Scholar

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [3] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [4] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [5] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, 2020, 69(11): 117701. doi: 10.7498/aps.69.20200232
    [6] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, 2018, 67(18): 182401. doi: 10.7498/aps.67.20181095
    [7] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [8] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [9] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [10] 刘燕文, 王小霞, 朱虹, 韩勇, 谷兵, 陆玉新, 方荣. 金刚石材料对螺旋线慢波组件散热性能的影响. 物理学报, 2013, 62(23): 234402. doi: 10.7498/aps.62.234402
    [11] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, 2012, 61(17): 177201. doi: 10.7498/aps.61.177201
    [12] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [13] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [14] 梁中翥, 梁静秋, 郑娜, 姜志刚, 王维彪, 方伟. 吸收辐射复合金刚石膜的制备及光学研究. 物理学报, 2009, 58(11): 8033-8038. doi: 10.7498/aps.58.8033
    [15] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [16] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [17] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
    [18] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
    [19] 李荣斌, 戴永兵, 胡晓君, 沈荷生, 何贤昶. 能量粒子轰击金刚石的计算机模拟. 物理学报, 2003, 52(12): 3135-3141. doi: 10.7498/aps.52.3135
    [20] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
计量
  • 文章访问数:  9873
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 修回日期:  2019-05-21
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回