搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层石墨烯层间限域CO氧化反应的密度泛函研究

崔树稳 李璐 魏连甲 钱萍

引用本文:
Citation:

双层石墨烯层间限域CO氧化反应的密度泛函研究

崔树稳, 李璐, 魏连甲, 钱萍

Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene

Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping
PDF
HTML
导出引用
  • 利用密度泛函理论, 研究了双层石墨烯层间一氧化碳(CO)与氧(O)的氧化反应, 获得了双层石墨烯层间距与反应能垒的定量关系. 计算结果表明反应初态、过渡态、末态体系总能以及反应能垒对层间距离变化敏感: 随着层间距的逐渐缩小, 反应能垒逐渐增加. 因此, 改变双层石墨烯层间间距可以实现反应能垒的原子级调控. 通过差分电荷密度分析体系的电子结构, 发现当双层石墨烯层间距较小时, 过渡态O—C=O中碳原子与石墨烯上下层中的碳原子之间有明显的电荷堆积, 出现sp轨道杂化, 导致二者相互作用增强, 在z轴方向受到束缚力, 难以与吸附在石墨烯表面的氧原子形成较弱的O—C键, 阻碍了过渡态O—C=O的形成. 通过调控双层石墨烯间距, 可以降低一氧化碳氧化反应能垒. 该研究可为石墨烯的应用以及新型碳基插层复合材料的制备提供一定的理论支撑.
    Graphene is a two-dimensional (2D) crystal of carbon atoms packed in a honeycomb lattice. Because of this unique structure, it shows a number of intriguing properties. Interface between neighboring 2D layers or between 2D overlayers and substrate surfaces provides confined space for chemical process. The interlayer spacing between bilayer graphenes of van der Waals material is expected to modify the properties of atoms and molecules confined at the atomic interfaces. In this paper, the carbon monoxide (CO) and oxygen (O) in bilayer graphene are studied by density functional theory (DFT). The quantitative relationship between the interlayer spacing of bilayer graphene (d) and the reaction energy barrier ($ {{E_{\rm{a}}}} $) is obtained. Five values of d between 4.7 Å and 5.9 Å are used. The calculated results show that the total energy of the initial state, the transition state, the final state system and the reaction barrier are sensitive to the variation of the interlayer distance: the reaction barrier increases gradually with interlayer distance decreasing. The calculated energy barrier is 1.13 eV when the interlayer distance is 4.7 Å, while the energy barrier is 0.39 eV when the interlayer distance is 5.9 Å. It is also found that adsorption energy between O and graphene at the top site and the bridge site increase gradually with interlayer distance decreasing. Therefore, the atomic-level regulation of the reaction barrier can be achieved by changing the interlayer spacing of bilayer graphene. The charge density difference shows that when the distance between two layers of graphene is small, there is an obvious charge accumulation between C atoms in transition state O—C=O and C atoms in the upper or lower layer of graphene. This results in sp orbital hybridization, which leads the interaction between two C atoms to be enhanced. It is difficult to form a weak O—C bond of transition state O—C=O with O atoms adsorbed on graphene because of a binding force which exists in the z-axis direction. The DFT calculation of CO oxidation reaction barrier can be reduced by adjusting the spacing of bilayer graphene, which provides a theoretical support for the application of graphene and the preparation of new carbon-based intercalated composites.
      通信作者: 崔树稳, cswjin@126.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0700500)、河北省重点研发计划自筹项目(批准号: 18211233)、河北省高等学校科学技术研究重点项目(批准号: ZD2018301)和沧州市自然科学基金(批准号: 177000001)资助的课题
      Corresponding author: Cui Shu-Wen, cswjin@126.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0700500), the Key Research and Development Program of Hebei Province, China (Grant No. 18211233), the Key Sciencific Studies Program of the Higher Education Institute of Hebei Province, China (Grant No. ZD2018301), and the Natural Science Foundation of Cangzhou, China (Grant No. 177000001)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mao Y, Yuan J, Zhong J 2010 J. Phys. Condens. Matt. 405 3337Google Scholar

    [3]

    Liu X, Wang C Z, Yao Y X 2011 Phys. Rev. B 83 235411

    [4]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326Google Scholar

    [5]

    Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M 2010 ACS Nano 4 6337Google Scholar

    [6]

    Verhoff F H, Labourt-Ibarre P, Ballal G D 1981 Chem. Eng. Sci. 36 1713

    [7]

    Yao Y X, Fu Q, Zhang Y Y, Weng X F, Li H, Chen M S, Jin L, Dong A Y, Mu R T, Jiang P, Liu L, Bluhm H, Liu Z, Zhang S B, Bao X H 2014 Proc. Natl. Acad. Sci. USA 111 17023Google Scholar

    [8]

    Fu Q, Bao X 2017 Chem. Soc. Rev. 46 1842Google Scholar

    [9]

    Zhang Y, Wang X, Li H, Li H, Wei M, Xiao X, Liu Z, Chen M, Fu Q, Bao X 2015 Nano Lett. 15 3616Google Scholar

    [10]

    Deng, D, Novoselov K, Fu Q, Zheng N, Tian Z, Bao X 2016 Nat. Nanotechnol. 11 218Google Scholar

    [11]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175Google Scholar

    [12]

    Ferrighi L, Datteo M, Fazio G, Di Valentin C 2016 J. Am. Chem. Soc. 138 7365Google Scholar

    [13]

    Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y 2016 Nat. Commun. 7 12697Google Scholar

    [14]

    Zhang H, Fu Q, Cui Y, Tan D, Bao X 2009 J. Phys. Chem. C 113 8296

    [15]

    Li H, Xiao J, Fu Q, Bao X 2017 Proc. Natl. Acad. Sci. USA 114 5930

    [16]

    Wang W X, Wei Y W, Li S Y, Li X Q, Wu X S, Feng J, He L 2018 Phys. Rev. B 97 085407Google Scholar

    [17]

    周晓峰, 方浩宇, 唐春梅. 2019 物理学报 68 053601Google Scholar

    Zhou X F, Fang H Y, Tang C M 2019 Acta Phys. Sin. 68 053601Google Scholar

    [18]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [24]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [25]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [26]

    Liu X, Sui Y H, Duan T, Meng C G, Han Y 2014 Phys. Chem. Chem. Phys. 16 23584Google Scholar

  • 图 1  初始结构优化模型 (a)侧面图; (b)俯视图

    Fig. 1.  Side view (a) and top view (b) of the initial optimized structures about different models.

    图 2  反应能垒${E_{\rm{a}}}$与双层石墨烯层间距d的关系

    Fig. 2.  Relation between ${E_{\rm{a}}}$ and d

    图 3  各状态对应结构的侧视图 (a)初态; (b)过渡态; (c)末态

    Fig. 3.  Side view of local configurations at various states along the reaction pathway: (a) Initial state; (b) transition state; (c) final state.

    图 4  不同层间距下, 从初态到末态一氧化碳氧化反应路径 (a) d = 4.7 Å; (b) d = 5.0 Å; (c) d = 5.3 Å; (d) d = 5.6 Å; (e) d = 5.9 Å

    Fig. 4.  Reaction pathway of the oxidation of CO and O from the initial state to final state under different interlayer distance: (a) d = 4.7 Å, (b) d = 5.0 Å, (c) d = 5.3 Å, (d) d = 5.6 Å, (e) d = 5.9 Å.

    图 5  CO与O反应, 在不同间距的双层石墨烯层间过渡态的电荷差分密度图, 其中等值面数值分别为 (a) 0.00014 e (a.u.)3; (b) 0.00020 e (a.u.)3; (c) 0.00025 e (a.u.)3; (d) 0.00035 e (a.u.)3; (e) 0.00048 e (a.u.)3

    Fig. 5.  Electron density different of the transition states between the bilayer grapheme and the isosurface is (a) 0.00014 e (a.u.)3, (b) 0.00020 e (a.u.)3, (c) 0.00025 e (a.u.)3, (d) 0.00035 e (a.u.)3, (e) 0.00048 e (a.u.)3, respectively.

    表 1  五个不同间距情况下的$E_{{\rm{ads}}{\text{-}}{\rm{O}}}^{{\rm{Top}}}({\rm{IS}})$, $E_{{\rm{ads}}{\text{-}}{\rm{O}}}^{{\rm{Bridge}}}({\rm{IS}})$, ${E_{\rm{a}}}$$\Delta H$

    Table 1.  Adsorption energy at top site and bridge site, the reaction energy barrier and reaction heat at five different interlayer distances.

    Modeld$\small E_{ {\rm{ads} }{\text{-} }{\rm{O} } }^{ {\rm{Top} } }({\rm{IS} })$$\small E_{ {\rm{ads} } {\text{-} }{\rm{O} } }^{ {\rm{Bridge} } }({\rm{IS} })$${E_{\rm{a}}}$$\Delta H$
    14.7–1.85–2.511.13–3.82
    25.0–1.81–2.470.82–3.97
    35.3–1.68–2.340.61–4.05
    45.6–1.41–2.070.40–4.08
    55.9–0.90–1.560.39–4.10
    注: d 是双层石墨烯层间距.
    下载: 导出CSV

    表 2  五个不同间距时初态(IS)、过渡态(TS)、末态(FS)的CO中C—O键长, O与CO分子间距以及CO2 (O=C=O)中O—C与C—O键长(分别对应dC—O(CO), dCO—O, dO—C(CO2), dC—O(CO2), 单位为Å)

    Table 2.  The C—O bond lengths of the initial, transition and final states of CO at five different distances, the molecular distances between O and CO, and the O—C and C—O bond lengths in CO2 (O=C=O). They correspond to dC—O(CO), dCO—O, dO—C(CO2), dC—O(CO2) with the units of Å.

    ModelReaction state
    IS TS FS
    dC—O(CO)dCO—O dC—O(CO)dCO—O dO—C(CO2)dC—O(CO2)
    d = 4.71.1534.170 1.1702.057 1.1751.175
    d = 5.01.1493.463 1.1722.118 1.1751.175
    d = 5.31.1483.385 1.1682.110 1.1761.176
    d = 5.61.1463.530 1.1632.038 1.1761.176
    d = 5.71.1454.338 1.1672.276 1.1761.176
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Mao Y, Yuan J, Zhong J 2010 J. Phys. Condens. Matt. 405 3337Google Scholar

    [3]

    Liu X, Wang C Z, Yao Y X 2011 Phys. Rev. B 83 235411

    [4]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326Google Scholar

    [5]

    Reddy A L M, Srivastava A, Gowda S R, Gullapalli H, Dubey M, Ajayan P M 2010 ACS Nano 4 6337Google Scholar

    [6]

    Verhoff F H, Labourt-Ibarre P, Ballal G D 1981 Chem. Eng. Sci. 36 1713

    [7]

    Yao Y X, Fu Q, Zhang Y Y, Weng X F, Li H, Chen M S, Jin L, Dong A Y, Mu R T, Jiang P, Liu L, Bluhm H, Liu Z, Zhang S B, Bao X H 2014 Proc. Natl. Acad. Sci. USA 111 17023Google Scholar

    [8]

    Fu Q, Bao X 2017 Chem. Soc. Rev. 46 1842Google Scholar

    [9]

    Zhang Y, Wang X, Li H, Li H, Wei M, Xiao X, Liu Z, Chen M, Fu Q, Bao X 2015 Nano Lett. 15 3616Google Scholar

    [10]

    Deng, D, Novoselov K, Fu Q, Zheng N, Tian Z, Bao X 2016 Nat. Nanotechnol. 11 218Google Scholar

    [11]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175Google Scholar

    [12]

    Ferrighi L, Datteo M, Fazio G, Di Valentin C 2016 J. Am. Chem. Soc. 138 7365Google Scholar

    [13]

    Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y 2016 Nat. Commun. 7 12697Google Scholar

    [14]

    Zhang H, Fu Q, Cui Y, Tan D, Bao X 2009 J. Phys. Chem. C 113 8296

    [15]

    Li H, Xiao J, Fu Q, Bao X 2017 Proc. Natl. Acad. Sci. USA 114 5930

    [16]

    Wang W X, Wei Y W, Li S Y, Li X Q, Wu X S, Feng J, He L 2018 Phys. Rev. B 97 085407Google Scholar

    [17]

    周晓峰, 方浩宇, 唐春梅. 2019 物理学报 68 053601Google Scholar

    Zhou X F, Fang H Y, Tang C M 2019 Acta Phys. Sin. 68 053601Google Scholar

    [18]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [19]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [23]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [24]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [25]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [26]

    Liu X, Sui Y H, Duan T, Meng C G, Han Y 2014 Phys. Chem. Chem. Phys. 16 23584Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [4] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [5] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [6] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [7] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [8] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [9] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [10] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [11] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [12] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [13] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [14] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [15] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [16] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜. 石墨烯层间纳米摩擦性质的第一性原理研究. 物理学报, 2012, 61(10): 106801. doi: 10.7498/aps.61.106801
    [17] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [18] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [19] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究. 物理学报, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [20] 韩清珍, 耿春宇, 赵月红, 戚传松, 温 浩. 溶剂对镍连二硫烯与乙烯反应的影响. 物理学报, 2008, 57(1): 96-102. doi: 10.7498/aps.57.96
计量
  • 文章访问数:  9804
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 修回日期:  2019-07-26
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回