搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元材料和器件的动态调控研究进展

束方洲 范仁浩 王嘉楠 彭茹雯 王牧

引用本文:
Citation:

等离激元材料和器件的动态调控研究进展

束方洲, 范仁浩, 王嘉楠, 彭茹雯, 王牧

Advances in dynamically tunable plasmonic materials and devices

Shu Fang-Zhou, Fan Ren-Hao, Wang Jia-Nan, Peng Ru-Wen, Wang Mu
PDF
HTML
导出引用
  • 等离激元学连接着光子学和电子学, 在光产生、显微显示、数据存储、光集成和光子芯片、传感技术和纳米制造技术等方面展示出重要应用, 正极大地促进既拥有纳米电子学的尺寸又兼有介电光子学速度的新一代信息材料和器件的发展. 但是, 传统上绝大部分等离激元材料和器件都是基于静态的设计, 即一旦被制备, 其性能也就确定, 人们无法根据需求进行实时的主动调控. 因此, 近年来人们开始从应用需求出发, 致力于研制动态调控的等离激元材料和器件. 本文总结等离激元材料和器件的动态调控研究进展, 给出动态调控等离激元材料和器件的基本原理, 即通过动态改变材料中金属微纳结构的等效介电函数、动态调节系统外部环境、动态控制结构中的耦合效应等, 实现对等离激元材料和器件性能的实时动态控制. 在此基础上, 分别以等离激元材料、等离激元超构材料、等离激元超构表面等为例, 展示在电、光、力、温度、环境等外部作用下相关材料和器件性能的实时改变和动态控制, 期望推动发展新型亚波长光电功能材料和器件.
    As is well known, plasmonics bridges the gap between nanoscale electronics and dielectric photonics, and is expected to be applied to light generation, photonic integration and chips, optical sensing and nanofabrication technology. So far, most of plasmonic microstructures and nanostructures cannot dynamically tune the properties once their structures are fabricated. Therefore, developing active plasmonic materials and devices is especially desired and necessary. Recently, dynamically tunable plasmonic materials and devices have been intensively investigated with the aim of practical applications. Here in this paper, we review recent research advances in active plasmonic materials and devices. Firstly we summarize three approaches to dynamically tuning plasmonic materials and devices. The first approach is to dynamically change the effective permittivity of metallic microstructures and nanostructures. The second approach is to dynamically adjust the ambient environments of the materials and devices. The third approach is to real-time tune the coupling effects in the nanostructures. Then we take ordinary plasmonic materials, plasmonic metamaterials, and plasmonic metasurfaces for example to show how to make them dynamically tunable. With external fields (such as electrical field, light field, thermal field, and mechanical force field, etc.), various approaches have been demonstrated in dynamically tuning the physical properties of plasmonic systems in real time. We anticipate that this review will promote the further development of new-generation subwavelength materials and optoelectrionic devices with new principles and better performances.
      通信作者: 彭茹雯, rwpeng@nju.edu.cn ; 王牧, muwang@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303702)和国家自然科学基金(批准号: 11634005, 11674155)资助的课题.
      Corresponding author: Peng Ru-Wen, rwpeng@nju.edu.cn ; Wang Mu, muwang@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303702) and the National Natural Science Foundation of China (Grant Nos. 11634005, 11674155).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [3]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802Google Scholar

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [6]

    Ozbay E 2006 Science 311 189Google Scholar

    [7]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [8]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110Google Scholar

    [9]

    Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P 2015 ACS Photonics 2 73Google Scholar

    [10]

    Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J 2013 Opt. Lett. 38 3133Google Scholar

    [11]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [12]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [13]

    Liu S D, Cheng M T, Yang Z J, Wang Q Q 2008 Opt. Lett. 33 851Google Scholar

    [14]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515Google Scholar

    [15]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R, Wang M 2013 Sci. Rep. 3 3095Google Scholar

    [16]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560Google Scholar

    [17]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [18]

    Xue C H, Jiang H T, Lu H, Du G Q, Chen H 2013 Opt. Lett. 38 959Google Scholar

    [19]

    Lu C, Hu X, Shi K, Hu Q, Zhu R, Yang H, Gong Q 2015 Light Sci. Appl 4 e302Google Scholar

    [20]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [21]

    Li Z Y 2015 EPL 110 14001Google Scholar

    [22]

    Gu Y, Huang L, Martin O J F, Gong Q 2010 Phys. Rev. B 81 193103Google Scholar

    [23]

    Yi M, Lu C, Gong Y, Qi Z, Cui Y 2014 Opt. Express 22 29627Google Scholar

    [24]

    Huang C P, Yin X G, Wang Q J, Huang H, Zhu Y Y 2010 Phys. Rev. Lett. 104 016402Google Scholar

    [25]

    Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J 2013 Opt. Express 21 28438Google Scholar

    [26]

    Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803Google Scholar

    [27]

    Shi W B, Liu L Z, Peng R, Xu D H, Zhang K, Jing H, Fan R H, Huang X R, Wang Q J, Wang M 2018 Nano Lett. 18 1896Google Scholar

    [28]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494Google Scholar

    [29]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905Google Scholar

    [30]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [31]

    Ma H F, Cui T J 2010 Nat. Commun. 1 21Google Scholar

    [32]

    Wu K, Cheng Q, Wang G P 2016 J. Opt. 18 044001Google Scholar

    [33]

    Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902Google Scholar

    [34]

    Bai Q, Chen J, Shen N H, Cheng C, Wang H T 2010 Opt. Express 18 2106Google Scholar

    [35]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [36]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [37]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [38]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [39]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [40]

    Xie Z, Lei T, Si G, Wang X, Lin J, Min C, Yuan X 2017 ACS Photonics 4 2158Google Scholar

    [41]

    Chen H T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [42]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [43]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R W, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [44]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [45]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [46]

    Fan K, Padilla W J 2015 Mater. Today 18 39Google Scholar

    [47]

    Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465Google Scholar

    [48]

    Jiang N, Zhuo X, Wang J 2018 Chem. Rev. 118 3054Google Scholar

    [49]

    Strohfeldt N, Tittl A, Schäferling M, Neubrech F, Kreibig U, Griessen R, Giessen H 2014 Nano Lett. 14 1140Google Scholar

    [50]

    Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A, Giessen H 2015 Nano Lett. 15 7949Google Scholar

    [51]

    Duan X, Kamin S, Sterl F, Giessen H, Liu N 2016 Nano Lett. 16 1462Google Scholar

    [52]

    Chen Y, Duan X, Matuschek M, Zhou Y, Neubrech F, Duan H, Liu N 2017 Nano Lett. 17 5555Google Scholar

    [53]

    Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N 2018 Sci. Adv. 4 eaar6768Google Scholar

    [54]

    Yu P, Li J, Zhang S, Jin Z, Schütz G, Qiu C W, Hirscher M, Liu N 2018 Nano Lett. 18 4584Google Scholar

    [55]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [56]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [57]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [58]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [59]

    Cheng H, Chen S, Yu P, Li J, Xie B, Li Z, Tian J 2013 Appl. Phys. Lett. 103 223102Google Scholar

    [60]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [61]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics. 10 244Google Scholar

    [62]

    Lundeberg M B, Gao Y, Asgari R, Tan C, van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [63]

    Iranzo D A, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291Google Scholar

    [64]

    Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar

    [65]

    Dorfs D, Härtling T, Miszta K, Bigall N C, Kim M R, Genovese A, Falqui A, Povia M, Manna L 2011 J. Am. Chem. Soc. 133 11175Google Scholar

    [66]

    Jain P K, Manthiram K, Engel J H, White S L, Faucheaux J A, Alivisatos A P 2013 Angew. Chem. Int. Ed. 52 13671Google Scholar

    [67]

    Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415Google Scholar

    [68]

    Runnerstrom E L, Llordés A, Lounis S D, Milliron D J 2014 Chem. Commun. 50 10555Google Scholar

    [69]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [70]

    Zhou Y, Wang C, Xu D H, Fan R H, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 34007Google Scholar

    [71]

    Zhou Y, Dong Y Q, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 54001Google Scholar

    [72]

    Zhou Y, Dong Y Q, Fan R H, Hu Q, Peng R W, Wang M 2014 Appl. Phys. Lett. 105 041114Google Scholar

    [73]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027

    [74]

    Wang Z, Hu B, Li B, Liu W, Li X, Liu J, Wang Y 2016 Mater. Res. Express 3 115011Google Scholar

    [75]

    Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B, Zhang S 2017 Sci. Adv. 3 e1701377Google Scholar

    [76]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027Google Scholar

    [77]

    Zhou Y, Zhu Y Y, Zhang K, Wu H W, Peng R W, Fan R H, Wang M 2017 Opt. Express 25 012081Google Scholar

    [78]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [79]

    Kossyrev P A, Yin A, Cloutier S G, Cardimona D A, Huang D, Alsing P M, Xu J M 2005 Nano Lett. 5 1978Google Scholar

    [80]

    Wang X, Kwon D H, Werner D H, Khoo I C, Kildishev A V, Shalaev V M 2007 Appl. Phys. Lett. 91 143122Google Scholar

    [81]

    Xiao S, Chettiar U K, Kildishev A V, Drachev V, Khoo I C, Shalaev V M 2009 Appl. Phys. Lett. 95 033115Google Scholar

    [82]

    Cetin A E, Mertiri A, Huang M, Erramilli S, Altug H 2013 Adv. Opt. Mater. 1 915Google Scholar

    [83]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [84]

    Si G, Zhao Y, Leong E S P, Liu Y J 2014 Materials 7 1296Google Scholar

    [85]

    Abass A, Rodriguez S R, Ako T, Aubert T, Verschuuren M, Van Thourhout D, Beeckman J, Hens Z, Rivas J G, Maes B 2014 Nano Lett. 14 5555Google Scholar

    [86]

    Khoo I C 2014 Prog. Quantum Electron. 38 77Google Scholar

    [87]

    Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253Google Scholar

    [88]

    Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S T, Chanda D 2015 Nat. Commun. 6 7337Google Scholar

    [89]

    Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar

    [90]

    Bohn J, Bucher T, Chong K E, Komar A, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 Nano Lett. 18 3461Google Scholar

    [91]

    Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457Google Scholar

    [92]

    Abb M, Wang Y, de Groot C H, Muskens O L 2014 Nat. Commun. 5 4869Google Scholar

    [93]

    Park J, Kang J H, Liu X, Brongersma M L 2015 Sci. Rep. 5 15754Google Scholar

    [94]

    Papadakis G T, Atwater H A 2015 Phys. Rev. B 92 184101Google Scholar

    [95]

    Zhu Y, Hu X, Chai Z, Yang H, Gong Q 2015 Appl. Phys. Lett. 106 091109Google Scholar

    [96]

    Guo P, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photonics 10 267Google Scholar

    [97]

    Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319Google Scholar

    [98]

    Park J, Kang J H, Kim S J, Liu X, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [99]

    Alam M Z, Schulz S A, Upham J, de Leon I, Boyd R W 2018 Nat. Photonics 12 79Google Scholar

    [100]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401Google Scholar

    [101]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [102]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [103]

    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W 2012 Nat. Commun. 3 1151Google Scholar

    [104]

    Iyer P P, Pendharkar M, Palmstrøm C J, Schuller J A 2017 Nat. Commun. 8 472Google Scholar

    [105]

    Lu Y J, Sokhoyan R, Cheng W H, Shirmanesh G K, Davoyan A R, Pala R A, Thyagarajan K, Atwater H A 2017 Nat. Commun. 8 1631Google Scholar

    [106]

    Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P, Keeler G, Pertsch T, Dolgova T V, Staude I, Brener I, Fedyanin A A 2017 Nat. Commun. 8 17Google Scholar

    [107]

    Yang Y, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nat. Photonics 11 390Google Scholar

    [108]

    Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang G, Neshev D, Kivshar Y S 2017 Adv. Funct. Mater. 27 1700580Google Scholar

    [109]

    Coppens Z J, Valentine J G 2017 Adv. Mater. 29 1701275Google Scholar

    [110]

    Dintinger J, Robel I, Kamat P V, Genet C, Ebbesen T W 2006 Adv. Mater. 18 1645Google Scholar

    [111]

    Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506Google Scholar

    [112]

    Leroux Y, Lacroix J C, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn J R 2009 Nano Lett. 9 2144Google Scholar

    [113]

    Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224Google Scholar

    [114]

    Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F, Phanichphant S 2012 Adv. Funct. Mater. 22 4383Google Scholar

    [115]

    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photonics 8 229Google Scholar

    [116]

    Wang Q, Liu L, Wang Y, Liu P, Jiang H, Xu Z, Ma Z, Oren S, Chow E K C, Lu M, Dong L 2015 Sci. Rep. 5 18567

    [117]

    Xu T, Walter E C, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H J, Talin A A 2016 Nat. Commun. 7 10479Google Scholar

    [118]

    Lu W, Jiang N, Wang J 2017 Adv. Mater. 29 1604862Google Scholar

    [119]

    Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J 2017 Light Sci. Appl. 6 e16254Google Scholar

    [120]

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483Google Scholar

    [121]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [122]

    Michel A K U, Chigrin D N, Maß T W W, Schönauer K, Salinga M, Wuttig M, Taubner T 2013 Nano Lett. 13 3470Google Scholar

    [123]

    Cao T, Simpson R E, Cryan M J 2013 J. Opt. Soc. Am. B 30 439Google Scholar

    [124]

    Zou L, Cryan M, Klemm M 2014 Opt. Express 22 24142Google Scholar

    [125]

    Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669Google Scholar

    [126]

    Chen Y, Li X, Sonnefraud Y, Fernández-Domínguez A I, Luo X, Hong M, Maier S A 2015 Sci. Rep. 5 8660Google Scholar

    [127]

    Cao T, Wei C, Mao L 2015 Sci. Rep. 5 14666Google Scholar

    [128]

    Yin X, Schäferling M, Michel A K U, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano Lett. 15 4255Google Scholar

    [129]

    Tittl A, Michel A K U, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597Google Scholar

    [130]

    Cao T, Bao J, Mao L, Zhang T, Novitsky A, Nieto-Vesperinas M, Qiu C W 2016 ACS Photonics 3 1934Google Scholar

    [131]

    Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016Google Scholar

    [132]

    Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics. Rev. 11 1700091Google Scholar

    [133]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [134]

    Suh J Y, Donev E U, Lopez R, Feldman L C, Haglund R F 2006 Appl. Phys. Lett. 88 133115Google Scholar

    [135]

    Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J, Atwater H A 2009 Opt. Express 17 18330Google Scholar

    [136]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518Google Scholar

    [137]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [138]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [139]

    Ferrara D W, Nag J, MacQuarrie E R, Kaye A B, Haglund R F 2013 Nano Lett. 13 4169Google Scholar

    [140]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [141]

    Wang H, Yang Y, Wang L 2014 Appl. Phys. Lett. 105 071907Google Scholar

    [142]

    Yu P, Chen S, Li J, Cheng H, Li Z, Liu W, Tian J 2015 Plasmonics 10 625Google Scholar

    [143]

    Zhu Y, Hu X, Yang H, Gong Q 2015 J. Opt. 17 105101Google Scholar

    [144]

    Kim S J, Yun H, Park K, Hong J, Yun J G, Lee K, Kim J, Jeong S J, Mun S E, Sung J, Lee Y W, Lee B 2017 Sci. Rep. 7 43723Google Scholar

    [145]

    Shu F Z, Yu F F, Peng R W, Zhu Y Y, Xiong B, Fan R H, Wang Z H, Liu Y, Wang M 2018 Adv. Opt. Mater. 6 1700939Google Scholar

    [146]

    Jia Z Y, Shu F Z, Gao Y J, Cheng F, Peng R W, Fan R H, Liu Y, Wang M 2018 Phys. Rev. Appl. 9 034009Google Scholar

    [147]

    Zhu L, Kapraun J, Ferrara J, Chang-Hasnain C J 2015 Optica 2 255Google Scholar

    [148]

    Ee H S, Agarwal R 2016 Nano Lett. 16 2818Google Scholar

    [149]

    Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraon A 2016 Laser Photonics Rev. 10 1002Google Scholar

    [150]

    Malek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641Google Scholar

    [151]

    Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034Google Scholar

    [152]

    She A, Zhang S, Shian S, Clarke D R, Capasso F 2018 Sci. Adv. 4 eaap9957Google Scholar

    [153]

    Laible F, Gollmer D A, Dickreuter S, Kern D P, Fleischer M 2018 Nanoscale 10 14915Google Scholar

    [154]

    Liu X, Huang Z, Zhu C, Wang L, Zang J 2018 Nano Lett. 18 1435Google Scholar

    [155]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104Google Scholar

    [156]

    Ou J Y, Plum E, Zhang J, Zheludev N I 2013 Nat. Nanotechnol. 8 252Google Scholar

    [157]

    Ma F, Lin Y S, Zhang X, Lee C 2014 Light Sci. Appl. 3 e171Google Scholar

    [158]

    Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K, Takahashi H, Kuwata-Gonokami M, Matsumoto K, Shimoyama I 2015 Nat. Commun. 6 8422Google Scholar

    [159]

    Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photonics 9 267Google Scholar

    [160]

    Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B 2015 Nat. Photonics 9 582Google Scholar

    [161]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [162]

    Zheludev N I, Plum E 2016 Nat. Nanotechnol. 11 16Google Scholar

    [163]

    Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T, Liu N 2014 Nat. Mater. 13 862Google Scholar

    [164]

    Holsteen A L, Raza S, Fan P, Kik P G, Brongersma M L 2017 Science 358 1407Google Scholar

    [165]

    Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C, Singh R 2018 Nat. Commun. 9 4056Google Scholar

    [166]

    Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A 2016 Nat. Rev. Mater. 2 16088

    [167]

    Novotny L, van Hulst N 2011 Nat. Photonics 5 83Google Scholar

    [168]

    Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi N N, Lu M, Stein A, Li C Y, Ramanathan S, Yu N 2016 Adv. Mater. 28 9117Google Scholar

    [169]

    Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048Google Scholar

    [170]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [171]

    Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photonics 11 628Google Scholar

    [172]

    Wang Z, Cheng F, Winsor T, Liu Y 2016 Nanotechnology 27 412001Google Scholar

    [173]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk'yanchuk B 2016 Science 354 aag2472Google Scholar

    [174]

    Xia D, Ku Z, Lee S C, Brueck S R J 2011 Adv. Mater. 23 147Google Scholar

    [175]

    Klinkova A, Choueiri R M, Kumacheva E 2014 Chem. Soc. Rev. 43 3976Google Scholar

    [176]

    Chen F, Li J, Yu F, Zhao D, Wang F, Chen Y, Peng R W, Wang M 2016 Adv. Mater. 28 7193Google Scholar

    [177]

    Guo L J 2007 Adv. Mater. 19 495

  • 图 1  动态可调等离激元材料和器件示意 (a)通过氢气调控手性光学响应的工作原理[51]; (b)通过红外纳米成像观察石墨烯中电调控等离激元[58]; (c)相变材料锗锑碲常温时为非晶相, 高温时为晶相[121]; (d)亚波长小孔后等离激元诱导的光透射动态调控[155]

    Fig. 1.  Schematic of active plasmonic materials and devices: (a) Working principle of hydrogen regulation to the chiroptical response[51]; (b) gate-tuning of graphene plasmons revealed by infrared nano-imaging[58]; (c) GeSbTe is amorphous at room temperature, and crystalline at high temperature[121]; (d) tunable interference of light behind subwavelength apertures[155].

    图 2  动态调节传播型表面等离激元 (a)通过散射扫描近场光学显微镜对传播型和局域型石墨烯等离激元成像[57]; (b)利用液晶实现对表面等离激元的热调控[82]; (c)通过石墨烯接触调控等离激元波导的色散关系[70]; (d)用于调控表面等离激元的平面外设计的柔性超构表面[154]

    Fig. 2.  Dynamically tune propagating surface plasmons: (a) Imaging propagating and localized graphene plasmons by scattering-type scanning near-field optical microscopy[57]; (b) thermal tuning of surface plasmon polaritons using liquid crystals[82]; (c) tuning the dispersion relation of a plasmonic waveguide via graphene contact[70]; (d) out-of-plane designed soft metasurface for tunable surface plasmon polariton[154].

    图 3  动态调控局域型表面等离激元 (a)借助10 nm的钯催化层和5 nm的钛缓冲剂将镁颗粒转换成氢化镁, 反之亦然[50]; (b)全光控制单个等离激元纳米天线-ITO混合结构[91]; (c)一种在近红外频段下工作的电力驱动可重构的等离激元超构材料[156]; (d)动态调节掺杂纳米晶中表面等离激元共振[67]; (e)掺杂纳米晶作为氧化还原化学反应的等离激元探头[66]

    Fig. 3.  Dynamically tune localized surface plasmons: (a) Switching of magnesium particles to magnesium hydride and vice versa with the aid of a 10 nm catalytic Pd layer and 5 nm Ti buffer[50]; (b) all-optical control of a single plasmonic nanoantenna-ITO hybrid[91]; (c) an electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared[156]; (d) dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals[67]; (e) doped nanocrystals as plasmonic probes of redox chemistry[66].

    图 4  动态调控等离激元色彩 (a)绘画作品的动态显示, 展示了黑/白显示和彩色显示之间的转换[52]; (b)利用液晶介电函数变化实现快速高对比度的电致变色开关[117]; (c)基于二氧化钒相变动态可调等离激元彩色显示[145]; (d)二维动态调控铝等离激元阵列实现全光谱响应[151]

    Fig. 4.  Dynamically tune plasmonic colors: (a) Dynamic display of the artwork, showing transformations between black/white printing and color printing[52]; (b) high-contrast and fast electrochromic switching enabled by the variation in permittivity of liquid crystals[117]; (c) dynamic plasmonic color generation based on phase transition of vanadium dioxide[145]; (d) two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[151].

    图 5  动态可调纳米天线 (a)利用二氢化钇与氢气反应实现纳米天线开关[49]; (b)在SmNiO3薄膜上设计等离激元超构表面实现对红外反射率的窄带调控[168]; (c)石墨烯复合等离激元天线的宽带电调控[69]; (d)超薄非线性超构表面中的动态超快可调慢光效应[19]

    Fig. 5.  Active plamsonic nanoantennas: (a) Switchable nanoantennas by the interaction of yttrium dihydride with hydrogen[49]; (b) narrowband tuning of infrared reflectivity in devices consisting of plasmonic metasurfaces patterned on SmNiO3 thin films[168]; (c) broad electrical tuning of graphene-loaded plasmonic antennas[69]; (d) an actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces[19].

    图 6  等离激元调制器 (a)钛酸钡薄膜等离激元干涉仪中电光调制[169]; (b)通过二氧化钒相变调控表面等离激元传播方向[144]; (c)基于锗锑碲相变动态控制表面等离激元波导[125]; (d)利用光致变色分子实现非易失性等离激元开关[111]

    Fig. 6.  Plamsonic modulators: (a) Electrooptic modulation in thin film barium titanate plasmonic interferometers[169]; (b) active directional switching of surface plasmon polaritons using the phase transition of vanadium dioxide[144]; (c) active control of surface plasmon waveguides based on the phase transition of GeSbTe[125]; (d) a nonvolatile plasmonic switch employing photochromic molecules[111].

    图 7  动态可调负折射率 (a)超构材料中可调磁响应[81]; (b)基于相变材料可调负折射率超构材料[123]

    Fig. 7.  Dynamically tunable negative refractive index: (a) Tunable magnetic response of metamaterials[81]; (b) tunable negative index metamaterials based on phase-change materials[123], reprinted with permission from Ref. [123] © The Optical Society.

    图 8  动态可调吸收 (a)石墨烯纳米盘阵列实现动态可调吸收增强[60]; (b)通过相变空间层实现可开关的超材料吸收器/发射器[141]; (c)基于相变材料锗锑碲超薄等离激元超构材料实现动态热辐射调控[132]

    Fig. 8.  Dynamically tune optical absorption: (a) Active tunable absorption enhancement with graphene nanodisk arrays[60]; (b) switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer[141]; (c) dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[132].

    图 9  动态可调偏振态 (a)自由可调宽带太赫兹波偏振旋转器[161]; (b)石墨烯电极驱动的宽带可调液晶太赫兹波片[87]; (c)非线性各向异性超构材料实现超快产生与转换光的偏振态[171]; (d)利用二氧化钒相变动态转换光的偏振态[146]

    Fig. 9.  Dynamically tune the polarization states of light: (a) Feely tunable broadband polarization rotator for terahertz waves[161]; (b) broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes[87]; (c) ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[171]; (d) dynamically switching the polarization state of light based on the phase transition of vanadium dioxide[146].

    图 10  动态可调手性 (a)动态调控非线性超构材料中手性[95]; (b)非手性相变超构材料实现超快调节圆二色性[127]; (c)可重构的三维等离激元超构分子[163]

    Fig. 10.  Dynamically tunable chirality: (a) Active control of chirality in nonlinear metamaterials[95]; (b) achiral phase change metamaterials for ultrafast tuning of giant circular conversion dichroism[127]; (c) reconfigurable 3D plasmonic metamolecules[163].

    图 11  动态可调异常反射和折射 (a)基于相变材料的可调反射阵列[124]; (b)电调控导电氧化物超构表面[97]; (c)可拉伸衬底上的可调超构表面[148]

    Fig. 11.  Dynamically tunable anomaly reflection and refraction: (a) Phase change material based tunable reflectarray[124], reprinted with permission from Ref.[124] © The Optical Society; (b) gate-tunable conducting oxide metasurfaces[97]; (c) tunable metasurface on a stretchable substrate[148].

    图 12  动态可调透镜 (a)基于径向偏振光照射的复合纳米环的在近场和远场之间的动态可调的等离激元透镜[142]; (b)基于相变材料的平面透镜调控光的相前[126]

    Fig. 12.  Active plasmonic metalenses: (a) dynamically tunable plasmonic lens between the near and far fields based on composite nanorings illuminated with radially polarized light[142]; (b) engineering the phase front of light with phase-change material based planar lenses[126].

    图 13  动态可调偏振态 (a)基于石墨烯纳米结构动态可调的宽带中红外偏振变换器[59]; (b)通过光调控实现光偏振态转换的可重构超构表面[119]

    Fig. 13.  Dynamically tune the polarization states of light: (a) Dynamically tunable broadband mid-infrared cross polarization converter based on graphene nanostructures[59]; (b) reconfigurable metasurfaces that enable light polarization control by light[119].

    图 14  动态可调全息 (a)可见光谱下的动态Janus超构表面全息[54]; (b) 可拉伸衬底上的应变多重超构表面全息[150]

    Fig. 14.  Dynamically tunable holograms: (a) Dynamic Janus metasurface holograms in the visible spectral region[54]; (b) strain multiplexed metasurface holograms on a stretchable substrate[150].

  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [3]

    Xu H, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [4]

    Xu H, Käll M 2002 Phys. Rev. Lett. 89 246802Google Scholar

    [5]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [6]

    Ozbay E 2006 Science 311 189Google Scholar

    [7]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [8]

    Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X 2011 Nat. Mater. 10 110Google Scholar

    [9]

    Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P 2015 ACS Photonics 2 73Google Scholar

    [10]

    Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J 2013 Opt. Lett. 38 3133Google Scholar

    [11]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [12]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)

    [13]

    Liu S D, Cheng M T, Yang Z J, Wang Q Q 2008 Opt. Lett. 33 851Google Scholar

    [14]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515Google Scholar

    [15]

    Hu Q, Xu D H, Zhou Y, Peng R W, Fan R H, Fang N X, Wang Q J, Huang X R, Wang M 2013 Sci. Rep. 3 3095Google Scholar

    [16]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560Google Scholar

    [17]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [18]

    Xue C H, Jiang H T, Lu H, Du G Q, Chen H 2013 Opt. Lett. 38 959Google Scholar

    [19]

    Lu C, Hu X, Shi K, Hu Q, Zhu R, Yang H, Gong Q 2015 Light Sci. Appl 4 e302Google Scholar

    [20]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [21]

    Li Z Y 2015 EPL 110 14001Google Scholar

    [22]

    Gu Y, Huang L, Martin O J F, Gong Q 2010 Phys. Rev. B 81 193103Google Scholar

    [23]

    Yi M, Lu C, Gong Y, Qi Z, Cui Y 2014 Opt. Express 22 29627Google Scholar

    [24]

    Huang C P, Yin X G, Wang Q J, Huang H, Zhu Y Y 2010 Phys. Rev. Lett. 104 016402Google Scholar

    [25]

    Shi X, Han D, Dai Y, Yu Z, Sun Y, Chen H, Liu X, Zi J 2013 Opt. Express 21 28438Google Scholar

    [26]

    Cheng G, Qin W, Lin M H, Wei L, Fan X, Zhang H, Gwo S, Zeng C, Hou J G, Zhang Z 2017 Phys. Rev. Lett. 119 156803Google Scholar

    [27]

    Shi W B, Liu L Z, Peng R, Xu D H, Zhang K, Jing H, Fan R H, Huang X R, Wang Q J, Wang M 2018 Nano Lett. 18 1896Google Scholar

    [28]

    Liu Y, Zhang X 2011 Chem. Soc. Rev. 40 2494Google Scholar

    [29]

    Xiong X, Wang Z W, Fu S J, Wang M, Peng R W, Hao X P, Sun C 2011 Appl. Phys. Lett. 99 181905Google Scholar

    [30]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [31]

    Ma H F, Cui T J 2010 Nat. Commun. 1 21Google Scholar

    [32]

    Wu K, Cheng Q, Wang G P 2016 J. Opt. 18 044001Google Scholar

    [33]

    Sheng C, Liu H, Wang Y, Zhu S N, Genov D A 2013 Nat. Photonics 7 902Google Scholar

    [34]

    Bai Q, Chen J, Shen N H, Cheng C, Wang H T 2010 Opt. Express 18 2106Google Scholar

    [35]

    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [36]

    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Adv. Mater. 25 3994Google Scholar

    [37]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [38]

    Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [39]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P 2018 Nat. Nanotechnol. 13 227Google Scholar

    [40]

    Xie Z, Lei T, Si G, Wang X, Lin J, Min C, Yuan X 2017 ACS Photonics 4 2158Google Scholar

    [41]

    Chen H T, Taylor A J, Yu N 2016 Rep. Prog. Phys. 79 076401Google Scholar

    [42]

    Jiang S C, Xiong X, Hu Y S, Hu Y H, Ma G B, Peng R W, Sun C, Wang M 2014 Phys. Rev. X 4 021026

    [43]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R W, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [44]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [45]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [46]

    Fan K, Padilla W J 2015 Mater. Today 18 39Google Scholar

    [47]

    Wuttig M, Bhaskaran H, Taubner T 2017 Nat. Photonics 11 465Google Scholar

    [48]

    Jiang N, Zhuo X, Wang J 2018 Chem. Rev. 118 3054Google Scholar

    [49]

    Strohfeldt N, Tittl A, Schäferling M, Neubrech F, Kreibig U, Griessen R, Giessen H 2014 Nano Lett. 14 1140Google Scholar

    [50]

    Sterl F, Strohfeldt N, Walter R, Griessen R, Tittl A, Giessen H 2015 Nano Lett. 15 7949Google Scholar

    [51]

    Duan X, Kamin S, Sterl F, Giessen H, Liu N 2016 Nano Lett. 16 1462Google Scholar

    [52]

    Chen Y, Duan X, Matuschek M, Zhou Y, Neubrech F, Duan H, Liu N 2017 Nano Lett. 17 5555Google Scholar

    [53]

    Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N 2018 Sci. Adv. 4 eaar6768Google Scholar

    [54]

    Yu P, Li J, Zhang S, Jin Z, Schütz G, Qiu C W, Hirscher M, Liu N 2018 Nano Lett. 18 4584Google Scholar

    [55]

    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630Google Scholar

    [56]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [57]

    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R, Koppens F H L 2012 Nature 487 77Google Scholar

    [58]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [59]

    Cheng H, Chen S, Yu P, Li J, Xie B, Li Z, Tian J 2013 Appl. Phys. Lett. 103 223102Google Scholar

    [60]

    Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, García de Abajo F J, Nordlander P, Zhu X, Halas N J 2014 Nano Lett. 14 299Google Scholar

    [61]

    Ni G X, Wang L, Goldflam M D, Wagner M, Fei Z, McLeod A S, Liu M K, Keilmann F, Özyilmaz B, Castro Neto A H, Hone J, Fogler M M, Basov D N 2016 Nat. Photonics. 10 244Google Scholar

    [62]

    Lundeberg M B, Gao Y, Asgari R, Tan C, van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [63]

    Iranzo D A, Nanot S, Dias E J C, Epstein I, Peng C, Efetov D K, Lundeberg M B, Parret R, Osmond J, Hong J Y, Kong J, Englund D R, Peres N M R, Koppens F H L 2018 Science 360 291Google Scholar

    [64]

    Ni G X, McLeod A S, Sun Z, Wang L, Xiong L, Post K W, Sunku S S, Jiang B Y, Hone J, Dean C R, Fogler M M, Basov D N 2018 Nature 557 530Google Scholar

    [65]

    Dorfs D, Härtling T, Miszta K, Bigall N C, Kim M R, Genovese A, Falqui A, Povia M, Manna L 2011 J. Am. Chem. Soc. 133 11175Google Scholar

    [66]

    Jain P K, Manthiram K, Engel J H, White S L, Faucheaux J A, Alivisatos A P 2013 Angew. Chem. Int. Ed. 52 13671Google Scholar

    [67]

    Garcia G, Buonsanti R, Runnerstrom E L, Mendelsberg R J, Llordes A, Anders A, Richardson T J, Milliron D J 2011 Nano Lett. 11 4415Google Scholar

    [68]

    Runnerstrom E L, Llordés A, Lounis S D, Milliron D J 2014 Chem. Commun. 50 10555Google Scholar

    [69]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [70]

    Zhou Y, Wang C, Xu D H, Fan R H, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 34007Google Scholar

    [71]

    Zhou Y, Dong Y Q, Zhang K, Peng R W, Hu Q, Wang M 2014 EPL 107 54001Google Scholar

    [72]

    Zhou Y, Dong Y Q, Fan R H, Hu Q, Peng R W, Wang M 2014 Appl. Phys. Lett. 105 041114Google Scholar

    [73]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027

    [74]

    Wang Z, Hu B, Li B, Liu W, Li X, Liu J, Wang Y 2016 Mater. Res. Express 3 115011Google Scholar

    [75]

    Kim T T, Oh S S, Kim H D, Park H S, Hess O, Min B, Zhang S 2017 Sci. Adv. 3 e1701377Google Scholar

    [76]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027Google Scholar

    [77]

    Zhou Y, Zhu Y Y, Zhang K, Wu H W, Peng R W, Fan R H, Wang M 2017 Opt. Express 25 012081Google Scholar

    [78]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [79]

    Kossyrev P A, Yin A, Cloutier S G, Cardimona D A, Huang D, Alsing P M, Xu J M 2005 Nano Lett. 5 1978Google Scholar

    [80]

    Wang X, Kwon D H, Werner D H, Khoo I C, Kildishev A V, Shalaev V M 2007 Appl. Phys. Lett. 91 143122Google Scholar

    [81]

    Xiao S, Chettiar U K, Kildishev A V, Drachev V, Khoo I C, Shalaev V M 2009 Appl. Phys. Lett. 95 033115Google Scholar

    [82]

    Cetin A E, Mertiri A, Huang M, Erramilli S, Altug H 2013 Adv. Opt. Mater. 1 915Google Scholar

    [83]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar

    [84]

    Si G, Zhao Y, Leong E S P, Liu Y J 2014 Materials 7 1296Google Scholar

    [85]

    Abass A, Rodriguez S R, Ako T, Aubert T, Verschuuren M, Van Thourhout D, Beeckman J, Hens Z, Rivas J G, Maes B 2014 Nano Lett. 14 5555Google Scholar

    [86]

    Khoo I C 2014 Prog. Quantum Electron. 38 77Google Scholar

    [87]

    Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253Google Scholar

    [88]

    Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S T, Chanda D 2015 Nat. Commun. 6 7337Google Scholar

    [89]

    Sautter J, Staude I, Decker M, Rusak E, Neshev D N, Brener I, Kivshar Y S 2015 ACS Nano 9 4308Google Scholar

    [90]

    Bohn J, Bucher T, Chong K E, Komar A, Choi D Y, Neshev D N, Kivshar Y S, Pertsch T, Staude I 2018 Nano Lett. 18 3461Google Scholar

    [91]

    Abb M, Albella P, Aizpurua J, Muskens O L 2011 Nano Lett. 11 2457Google Scholar

    [92]

    Abb M, Wang Y, de Groot C H, Muskens O L 2014 Nat. Commun. 5 4869Google Scholar

    [93]

    Park J, Kang J H, Liu X, Brongersma M L 2015 Sci. Rep. 5 15754Google Scholar

    [94]

    Papadakis G T, Atwater H A 2015 Phys. Rev. B 92 184101Google Scholar

    [95]

    Zhu Y, Hu X, Chai Z, Yang H, Gong Q 2015 Appl. Phys. Lett. 106 091109Google Scholar

    [96]

    Guo P, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photonics 10 267Google Scholar

    [97]

    Huang Y W, Lee H W H, Sokhoyan R, Pala R A, Thyagarajan K, Han S, Tsai D P, Atwater H A 2016 Nano Lett. 16 5319Google Scholar

    [98]

    Park J, Kang J H, Kim S J, Liu X, Brongersma M L 2017 Nano Lett. 17 407Google Scholar

    [99]

    Alam M Z, Schulz S A, Upham J, de Leon I, Boyd R W 2018 Nat. Photonics 12 79Google Scholar

    [100]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401Google Scholar

    [101]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597Google Scholar

    [102]

    Zhang S, Zhou J, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942Google Scholar

    [103]

    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J, Zhang W 2012 Nat. Commun. 3 1151Google Scholar

    [104]

    Iyer P P, Pendharkar M, Palmstrøm C J, Schuller J A 2017 Nat. Commun. 8 472Google Scholar

    [105]

    Lu Y J, Sokhoyan R, Cheng W H, Shirmanesh G K, Davoyan A R, Pala R A, Thyagarajan K, Atwater H A 2017 Nat. Commun. 8 1631Google Scholar

    [106]

    Shcherbakov M R, Liu S, Zubyuk V V, Vaskin A, Vabishchevich P P, Keeler G, Pertsch T, Dolgova T V, Staude I, Brener I, Fedyanin A A 2017 Nat. Commun. 8 17Google Scholar

    [107]

    Yang Y, Kelley K, Sachet E, Campione S, Luk T S, Maria J P, Sinclair M B, Brener I 2017 Nat. Photonics 11 390Google Scholar

    [108]

    Rahmani M, Xu L, Miroshnichenko A E, Komar A, Camacho-Morales R, Chen H, Zárate Y, Kruk S, Zhang G, Neshev D, Kivshar Y S 2017 Adv. Funct. Mater. 27 1700580Google Scholar

    [109]

    Coppens Z J, Valentine J G 2017 Adv. Mater. 29 1701275Google Scholar

    [110]

    Dintinger J, Robel I, Kamat P V, Genet C, Ebbesen T W 2006 Adv. Mater. 18 1645Google Scholar

    [111]

    Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506Google Scholar

    [112]

    Leroux Y, Lacroix J C, Fave C, Stockhausen V, Félidj N, Grand J, Hohenau A, Krenn J R 2009 Nano Lett. 9 2144Google Scholar

    [113]

    Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224Google Scholar

    [114]

    Baba A, Tada K, Janmanee R, Sriwichai S, Shinbo K, Kato K, Kaneko F, Phanichphant S 2012 Adv. Funct. Mater. 22 4383Google Scholar

    [115]

    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photonics 8 229Google Scholar

    [116]

    Wang Q, Liu L, Wang Y, Liu P, Jiang H, Xu Z, Ma Z, Oren S, Chow E K C, Lu M, Dong L 2015 Sci. Rep. 5 18567

    [117]

    Xu T, Walter E C, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H J, Talin A A 2016 Nat. Commun. 7 10479Google Scholar

    [118]

    Lu W, Jiang N, Wang J 2017 Adv. Mater. 29 1604862Google Scholar

    [119]

    Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J 2017 Light Sci. Appl. 6 e16254Google Scholar

    [120]

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483Google Scholar

    [121]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [122]

    Michel A K U, Chigrin D N, Maß T W W, Schönauer K, Salinga M, Wuttig M, Taubner T 2013 Nano Lett. 13 3470Google Scholar

    [123]

    Cao T, Simpson R E, Cryan M J 2013 J. Opt. Soc. Am. B 30 439Google Scholar

    [124]

    Zou L, Cryan M, Klemm M 2014 Opt. Express 22 24142Google Scholar

    [125]

    Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669Google Scholar

    [126]

    Chen Y, Li X, Sonnefraud Y, Fernández-Domínguez A I, Luo X, Hong M, Maier S A 2015 Sci. Rep. 5 8660Google Scholar

    [127]

    Cao T, Wei C, Mao L 2015 Sci. Rep. 5 14666Google Scholar

    [128]

    Yin X, Schäferling M, Michel A K U, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano Lett. 15 4255Google Scholar

    [129]

    Tittl A, Michel A K U, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597Google Scholar

    [130]

    Cao T, Bao J, Mao L, Zhang T, Novitsky A, Nieto-Vesperinas M, Qiu C W 2016 ACS Photonics 3 1934Google Scholar

    [131]

    Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016Google Scholar

    [132]

    Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics. Rev. 11 1700091Google Scholar

    [133]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [134]

    Suh J Y, Donev E U, Lopez R, Feldman L C, Haglund R F 2006 Appl. Phys. Lett. 88 133115Google Scholar

    [135]

    Dicken M J, Aydin K, Pryce I M, Sweatlock L A, Boyd E M, Walavalkar S, Ma J, Atwater H A 2009 Opt. Express 17 18330Google Scholar

    [136]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518Google Scholar

    [137]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [138]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A, Omenetto F G, Zhang X, Nelson K A, Averitt R D 2012 Nature 487 345Google Scholar

    [139]

    Ferrara D W, Nag J, MacQuarrie E R, Kaye A B, Haglund R F 2013 Nano Lett. 13 4169Google Scholar

    [140]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [141]

    Wang H, Yang Y, Wang L 2014 Appl. Phys. Lett. 105 071907Google Scholar

    [142]

    Yu P, Chen S, Li J, Cheng H, Li Z, Liu W, Tian J 2015 Plasmonics 10 625Google Scholar

    [143]

    Zhu Y, Hu X, Yang H, Gong Q 2015 J. Opt. 17 105101Google Scholar

    [144]

    Kim S J, Yun H, Park K, Hong J, Yun J G, Lee K, Kim J, Jeong S J, Mun S E, Sung J, Lee Y W, Lee B 2017 Sci. Rep. 7 43723Google Scholar

    [145]

    Shu F Z, Yu F F, Peng R W, Zhu Y Y, Xiong B, Fan R H, Wang Z H, Liu Y, Wang M 2018 Adv. Opt. Mater. 6 1700939Google Scholar

    [146]

    Jia Z Y, Shu F Z, Gao Y J, Cheng F, Peng R W, Fan R H, Liu Y, Wang M 2018 Phys. Rev. Appl. 9 034009Google Scholar

    [147]

    Zhu L, Kapraun J, Ferrara J, Chang-Hasnain C J 2015 Optica 2 255Google Scholar

    [148]

    Ee H S, Agarwal R 2016 Nano Lett. 16 2818Google Scholar

    [149]

    Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraon A 2016 Laser Photonics Rev. 10 1002Google Scholar

    [150]

    Malek S C, Ee H S, Agarwal R 2017 Nano Lett. 17 3641Google Scholar

    [151]

    Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034Google Scholar

    [152]

    She A, Zhang S, Shian S, Clarke D R, Capasso F 2018 Sci. Adv. 4 eaap9957Google Scholar

    [153]

    Laible F, Gollmer D A, Dickreuter S, Kern D P, Fleischer M 2018 Nanoscale 10 14915Google Scholar

    [154]

    Liu X, Huang Z, Zhu C, Wang L, Zang J 2018 Nano Lett. 18 1435Google Scholar

    [155]

    Gao F, Li D, Peng R W, Hu Q, Wei K, Wang Q J, Zhu Y Y, Wang M 2009 Appl. Phys. Lett. 95 011104Google Scholar

    [156]

    Ou J Y, Plum E, Zhang J, Zheludev N I 2013 Nat. Nanotechnol. 8 252Google Scholar

    [157]

    Ma F, Lin Y S, Zhang X, Lee C 2014 Light Sci. Appl. 3 e171Google Scholar

    [158]

    Kan T, Isozaki A, Kanda N, Nemoto N, Konishi K, Takahashi H, Kuwata-Gonokami M, Matsumoto K, Shimoyama I 2015 Nat. Commun. 6 8422Google Scholar

    [159]

    Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photonics 9 267Google Scholar

    [160]

    Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B 2015 Nat. Photonics 9 582Google Scholar

    [161]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [162]

    Zheludev N I, Plum E 2016 Nat. Nanotechnol. 11 16Google Scholar

    [163]

    Kuzyk A, Schreiber R, Zhang H, Govorov A O, Liedl T, Liu N 2014 Nat. Mater. 13 862Google Scholar

    [164]

    Holsteen A L, Raza S, Fan P, Kik P G, Brongersma M L 2017 Science 358 1407Google Scholar

    [165]

    Manjappa M, Pitchappa P, Singh N, Wang N, Zheludev N I, Lee C, Singh R 2018 Nat. Commun. 9 4056Google Scholar

    [166]

    Kristensen A, Yang J K W, Bozhevolnyi S I, Link S, Nordlander P, Halas N J, Mortensen N A 2016 Nat. Rev. Mater. 2 16088

    [167]

    Novotny L, van Hulst N 2011 Nat. Photonics 5 83Google Scholar

    [168]

    Li Z, Zhou Y, Qi H, Pan Q, Zhang Z, Shi N N, Lu M, Stein A, Li C Y, Ramanathan S, Yu N 2016 Adv. Mater. 28 9117Google Scholar

    [169]

    Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048Google Scholar

    [170]

    Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP98

    [171]

    Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photonics 11 628Google Scholar

    [172]

    Wang Z, Cheng F, Winsor T, Liu Y 2016 Nanotechnology 27 412001Google Scholar

    [173]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk'yanchuk B 2016 Science 354 aag2472Google Scholar

    [174]

    Xia D, Ku Z, Lee S C, Brueck S R J 2011 Adv. Mater. 23 147Google Scholar

    [175]

    Klinkova A, Choueiri R M, Kumacheva E 2014 Chem. Soc. Rev. 43 3976Google Scholar

    [176]

    Chen F, Li J, Yu F, Zhao D, Wang F, Chen Y, Peng R W, Wang M 2016 Adv. Mater. 28 7193Google Scholar

    [177]

    Guo L J 2007 Adv. Mater. 19 495

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] 孙鹏斐, 朱科建, 许鹏飞, 刘兴鹏, 孙堂友, 李海鸥, 周治平. 超紧凑硅基混合表面等离激元光场窄化器件的实验研究. 物理学报, 2022, 71(19): 196201. doi: 10.7498/aps.71.20212340
    [3] 赵翔宇, 秦楡禄, 季博宇, 郎鹏, 宋晓伟, 林景全. 飞秒传输表面等离激元的近场成像表征与激发效率的调控. 物理学报, 2021, 70(10): 107101. doi: 10.7498/aps.70.20201827
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [7] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [9] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [12] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [13] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [14] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [15] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [16] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [17] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [18] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [19] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [20] 任燕如, 尹道乐. 金属中声学等离激元的产生条件. 物理学报, 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
计量
  • 文章访问数:  13072
  • PDF下载量:  543
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-05-23
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回