搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究

郑路敏 钟淑英 徐波 欧阳楚英

引用本文:
Citation:

锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究

郑路敏, 钟淑英, 徐波, 欧阳楚英

First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries

Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying
PDF
HTML
导出引用
  • 掺杂是锂离子电池电极材料优化改性的一种有效的方法. 稀土元素因其具有高的电子电荷、大的离子半径以及强的自极化能力, 成为掺杂改性的重要选择. 本文利用基于密度泛函理论的第一性原理方法研究了稀土元素(La, Ce, Pr, Sm)掺杂的锂离子电池正极材料Li2MnO3的性质. 通过稀土元素的掺杂, Li2MnO3材料的晶格常数和晶胞体积都有不同程度的增大. 由于稀土原子的价态不同, 导致掺杂后的Li2MnO3的电子结构性质不同. La掺杂的Li2MnO3表现出金属性, 而Ce, Pr, Sm掺杂的结构为半导体性质, 但带隙与未掺杂情况下相比有所减小. Li2MnO3中的Li离子迁移在La和Ce掺杂后展示出复杂的能垒变化. 在远离稀土离子处, Li离子迁移势垒比未掺杂时减小, 但在靠近稀土离子处则表现为势垒变化的多样性. 当Li离子在离稀土离子最近的位置处进行迁移, 势垒有明显的增加, 这一结果与稀土离子周围的局域结构变化大密切相关.
    Although Li-ion batteries (LIBs) have had great success in portable electronic devices and electrical vehicles, the improvement of the performances has received intensive attention. Generally, doping is an effective method to modify the battery performance, such as cycling performance. Appropriate doping can effectively reduce the structural deformation of electrode materials during charging and discharging, thus improving the cycling performace of LIBs. Because of the large radius, large charge and strong self-polarization ability of rare earth ions, rare earth element is a promising candidate for doping modification. Motivated by this, we study the structural, electronic and ionic diffusion properties of rare-earth-doped cathode material Li2MnO3 by using first-principles calculations based on density functional theory as implemented in Vienna ab initio simulation package. After the doping of rare earth elements (La, Ce, Pr, Sm), the lattice constants and cell volumes increase with respect to the undoped one. The cell volume of La-doped Li2MnO3 has the biggest change, while the cell volume of Sm-doped one has the smallest change. Due to the different ionic valence states, the electronic structures of the doped Li2MnO3 are various. La-doped Li2MnO3 exhibits metallic characteristic, whereas Ce-, Pr-, and Sm-doped structures are semiconducting with smaller band gap than that of the undoped case. The Li diffusion energy barrier in Li2MnO3 shows complicated variation when the La and Ce are doped. At the sites far away from the rare earth ions, the Li diffusion barriers are lower than that of undoped one. The reason is that the diffusion channels, which are determined by the distance between neighboring O-layers, are enlarged due to the implantment of rare earth ions. However, the situations are various at the sites close to the rare earth ions. The Li diffusion barriers increase essentially when Li ions diffuse from the nearest sites to rare earth ions. Such a result is closely related to the huge changes of local structures around the rare earth ions. In addition, the effect of La doping on the Li diffusion barrier is more obvious than that of Ce doping, which is due to the local structure change around rare earth ions.
      通信作者: 钟淑英, syzhong@jxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11664012, 11564016)、江西省杰出青年人才资助计划(批准号: 20171BCB23035)、江西省教育厅科学技术研究项目(批准号: GJJ170186)和江西师范大学博士启动基金项目(批准号: 7957)资助的课题.
      Corresponding author: Zhong Shu-Ying, syzhong@jxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664012, 11564016), the Excellent Youth Foundation of Jiangxi Province, China (Grant No. 20171BCB23035), the Technology Project of Department of Education of Jiangxi Province, China (Grant No. GJJ170186), and the Science Foundation for Ph.D.s of Jiangxi Normal University, China (Grant No. 7957).
    [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q 2006 Electrochem. Commun. 8 1553Google Scholar

    [3]

    Xiao P H, Deng Z Q, Manthiram A, Henkelman G 2012 J. Phys. Chem. C 116 23201Google Scholar

    [4]

    候育花, 黄有林, 刘仲武, 曾德长 2015 物理学报 64 037501Google Scholar

    Hou Y H, Huang Y L, Liu Z W, Zeng D C 2015 Acta Phys. Sin. 64 037501Google Scholar

    [5]

    Ghosh P, Mahanty S, Basu R N 2009 Electrochim. Acta 54 1654Google Scholar

    [6]

    廖春发, 陈辉煌, 陈子平 2004 江西有色金属 18 33Google Scholar

    Liao C F, Chen H H, Chen Z P 2004 Jiangxi Nonferrous Metals 18 33Google Scholar

    [7]

    Wei J P, Cao X Y, Pan G L, Ye M, Yan J 2003 J. Rare Earths 21 466

    [8]

    Balaji S, Manichandran T, Mutharasu D 2012 Bull. Mater. Sci. 35 471Google Scholar

    [9]

    Iqbal M J, Ahmad Z 2008 J. Power Sources 179 763Google Scholar

    [10]

    Khedr A M, Abou-Sekkina M M, El-Metwaly F G 2013 J. Electron. Mater. 42127 5

    [11]

    Tang Z Y, Zhang N, Lu X H 2005 J. Rare Earths 23 120

    [12]

    叶兰, 张海朗 2012 稀有金属材料与工程 41 636

    Ye L, Zhang H L 2012 Rare Metal Mater. Eng. 41 636

    [13]

    Luo S H, Tian Y, Li H, Shi K J, Tang Z L, Zhang Z T 2010 J. Rare Earths 28 439Google Scholar

    [14]

    陈晗, 向楷雄, 龚文强, 刘建华 2011 稀有金属材料与工程 40 1936

    Chen H, Xiang K X, Gong W Q, Liu J H 2011 Rare Metal Mater. Eng. 40 1936

    [15]

    Zhang Y J, Xia S B, Zhang Y N, Dong P, Yan Y X, Yang R M 2012 Chin. Sci. Bull. 57 4181Google Scholar

    [16]

    杨书廷, 贾俊华, 郑立庆, 曹朝霞 2003 中国稀土学报 21 413Google Scholar

    Yang S T, Jia J H, Zheng L Q, Cao Z X 2003 J. Chin. Rare Earth Soc. 21 413Google Scholar

    [17]

    Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H 2012 J. Solid State Electrochem. 16 1247Google Scholar

    [18]

    Tian Y W, Kang X X, Liu L Y 2008 J. Rare Earths 26 279Google Scholar

    [19]

    Ding Y H, Zhang P, Jiang Y, Gao D S 2007 Solid State Ionics 178 967Google Scholar

    [20]

    赵世玺, 郭双桃, 邓玉峰, 熊凯, 徐亚辉, 南策文 2017 硅酸盐学报 45 495

    Zhao S X, Guo S T, Deng Y F, Xiong K, Xu Y H, Nan C W 2017 J. Chin. Ceram. Soc. 45 495

    [21]

    He P, Yu H J, Li D, Zhou H S 2012 J. Mater. Chem. 22 3680Google Scholar

    [22]

    Gao Y R, Ma J, Wang X F, Lu X, Bai Y, Wang Z X, Chen L Q 2014 J. Mater. Chem. A 2 4811Google Scholar

    [23]

    Wang Z Q, Wu M S, Xu B, Ouyang C Y 2016 J. Alloy Compd. 658 818Google Scholar

    [24]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [29]

    Koyama Y, Tanaka I, Nagao M, Kanno R 2009 J. Power Sources 189 798Google Scholar

    [30]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [31]

    Ning F H, Xu B, Shi J, Wu M S, Hu Y Q, Ouyang C Y 2016 J. Phys. Chem. C 120 18428Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [34]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [35]

    Zheng L M, Wang H W, Luo M, Wang G Q, Wang Z Q, Ouyang C Y 2018 Solid State Ionics 320 210Google Scholar

    [36]

    Strobel P, Lambert-Andron B 1988 J. Solid State Chem. 75 90Google Scholar

    [37]

    Xiao R J, Li H, Chen L Q 2012 Chem. Mater. 24 4242Google Scholar

    [38]

    Zhu Y, Li J, Ji X, Li T, Jin M, Ou X, Shen X, Wang W, Huang F 2018 AIP Adv. 8 105014Google Scholar

  • 图 1  Li2MnO3中稀土掺杂位置与Li离子的9种不同等价位示意图

    Fig. 1.  Crystal structure of Li2MnO3 with rare-earth doping sites and nine Li sites

    图 2  未掺杂Li2MnO3的电子态密度图

    Fig. 2.  Density of states of Li2MnO3 without doping

    图 3  稀土元素 (a) La, (b) Ce, (c) Pr, (d) Sm掺杂的Li2MnO3的电子态密度

    Fig. 3.  Density of states of Li2MnO3 with (a) La, (b) Ce, (c) Pr, and (d) Sm doping

    图 4  Li离子在La掺杂Li2MnO3中的迁移势垒, 所有的迁移路径与表3中所列的一致

    Fig. 4.  Diffusion energy barriers of Li ions in La-doped Li2MnO3. All diffusion paths are consistent with those listed in Table 3

    图 5  Li离子在Ce掺杂Li2MnO3中的迁移势垒, 所有的迁移路径与表3中所列的一致

    Fig. 5.  Diffusion energy barriers of Li ions in Ce-doped Li2MnO3. All diffusion paths are consistent with those listed in Table 3

    表 1  未掺杂与稀土掺杂的Li2MnO3的晶格常数、超胞体积与稀土元素的磁矩

    Table 1.  Lattice constants, volume of supercell, magnetic moment of rare-earth atom of Li2MnO3 without and with rare-earth doping

    体系 稀土元素的磁矩/μB 2a b 2c V3
    Li2MnO3(exp)[36] 9.874 8.532 10.060
    Li2MnO3 10.030 8.670 10.191 835.566
    La-Li2MnO3 0 10.244 8.828 10.317 877.527
    Ce-Li2MnO3 0 10.157 8.769 10.266 861.058
    Pr-Li2MnO3 1 10.151 8.765 10.263 859.917
    Sm-Li2MnO3 0 10.136 8.755 10.248 856.630
    下载: 导出CSV

    表 2  未掺杂Li2MnO3中的Mn离子与最近邻O离子之间的键长和稀土掺杂结构中稀土离子与最近邻O离子之间的键长

    Table 2.  Distance between Mn and the nearest neighboring O in undoped Li2MnO3 and distance between rare-earth ion and the nearest neighboring O in rare-earth-doped Li2MnO3

    Mn4+ La3+ Ce4+ Pr4+ Sm4+
    dM—O (M = Mn, La, Ce, Pr, Sm) 1.941 2.374 2.215 2.193 2.181
    1.934 2.385 2.198 2.208 2.183
    1.949 2.401 2.218 2.211 2.170
    下载: 导出CSV

    表 3  两种近邻结构中的Li离子迁移路径

    Table 3.  Diffusion paths of Li ions in two different structures with neighboring Li ions

    未掺杂 稀土掺杂
    2b-2c 6-3 6-3
    2b-4h 6-1 6-1 6-1'
    4h-2c 1-3 1-3 1'-3
    4h-2c 1-4 1'-4
    4h-4h 1-5 1-5 1'-5'
    4h-4h 1-2 1'-2'
    下载: 导出CSV
  • [1]

    Tarascon J M, Armand M 2001 Nature 414 359Google Scholar

    [2]

    Liu H, Cao Q, Fu L J, Li C, Wu Y P, Wu H Q 2006 Electrochem. Commun. 8 1553Google Scholar

    [3]

    Xiao P H, Deng Z Q, Manthiram A, Henkelman G 2012 J. Phys. Chem. C 116 23201Google Scholar

    [4]

    候育花, 黄有林, 刘仲武, 曾德长 2015 物理学报 64 037501Google Scholar

    Hou Y H, Huang Y L, Liu Z W, Zeng D C 2015 Acta Phys. Sin. 64 037501Google Scholar

    [5]

    Ghosh P, Mahanty S, Basu R N 2009 Electrochim. Acta 54 1654Google Scholar

    [6]

    廖春发, 陈辉煌, 陈子平 2004 江西有色金属 18 33Google Scholar

    Liao C F, Chen H H, Chen Z P 2004 Jiangxi Nonferrous Metals 18 33Google Scholar

    [7]

    Wei J P, Cao X Y, Pan G L, Ye M, Yan J 2003 J. Rare Earths 21 466

    [8]

    Balaji S, Manichandran T, Mutharasu D 2012 Bull. Mater. Sci. 35 471Google Scholar

    [9]

    Iqbal M J, Ahmad Z 2008 J. Power Sources 179 763Google Scholar

    [10]

    Khedr A M, Abou-Sekkina M M, El-Metwaly F G 2013 J. Electron. Mater. 42127 5

    [11]

    Tang Z Y, Zhang N, Lu X H 2005 J. Rare Earths 23 120

    [12]

    叶兰, 张海朗 2012 稀有金属材料与工程 41 636

    Ye L, Zhang H L 2012 Rare Metal Mater. Eng. 41 636

    [13]

    Luo S H, Tian Y, Li H, Shi K J, Tang Z L, Zhang Z T 2010 J. Rare Earths 28 439Google Scholar

    [14]

    陈晗, 向楷雄, 龚文强, 刘建华 2011 稀有金属材料与工程 40 1936

    Chen H, Xiang K X, Gong W Q, Liu J H 2011 Rare Metal Mater. Eng. 40 1936

    [15]

    Zhang Y J, Xia S B, Zhang Y N, Dong P, Yan Y X, Yang R M 2012 Chin. Sci. Bull. 57 4181Google Scholar

    [16]

    杨书廷, 贾俊华, 郑立庆, 曹朝霞 2003 中国稀土学报 21 413Google Scholar

    Yang S T, Jia J H, Zheng L Q, Cao Z X 2003 J. Chin. Rare Earth Soc. 21 413Google Scholar

    [17]

    Sun H B, Chen Y G, Xu C H, Zhu D, Huang L H 2012 J. Solid State Electrochem. 16 1247Google Scholar

    [18]

    Tian Y W, Kang X X, Liu L Y 2008 J. Rare Earths 26 279Google Scholar

    [19]

    Ding Y H, Zhang P, Jiang Y, Gao D S 2007 Solid State Ionics 178 967Google Scholar

    [20]

    赵世玺, 郭双桃, 邓玉峰, 熊凯, 徐亚辉, 南策文 2017 硅酸盐学报 45 495

    Zhao S X, Guo S T, Deng Y F, Xiong K, Xu Y H, Nan C W 2017 J. Chin. Ceram. Soc. 45 495

    [21]

    He P, Yu H J, Li D, Zhou H S 2012 J. Mater. Chem. 22 3680Google Scholar

    [22]

    Gao Y R, Ma J, Wang X F, Lu X, Bai Y, Wang Z X, Chen L Q 2014 J. Mater. Chem. A 2 4811Google Scholar

    [23]

    Wang Z Q, Wu M S, Xu B, Ouyang C Y 2016 J. Alloy Compd. 658 818Google Scholar

    [24]

    Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R 2016 Chin. Phys. B 25 018212Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [28]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [29]

    Koyama Y, Tanaka I, Nagao M, Kanno R 2009 J. Power Sources 189 798Google Scholar

    [30]

    Zhou F, Cococcioni M, Marianetti C A, Morgan D, Ceder G 2004 Phys. Rev. B 70 235121Google Scholar

    [31]

    Ning F H, Xu B, Shi J, Wu M S, Hu Y Q, Ouyang C Y 2016 J. Phys. Chem. C 120 18428Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Henkelman G, Jónsson H 2000 J. Chem. Phys. 113 9978Google Scholar

    [34]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [35]

    Zheng L M, Wang H W, Luo M, Wang G Q, Wang Z Q, Ouyang C Y 2018 Solid State Ionics 320 210Google Scholar

    [36]

    Strobel P, Lambert-Andron B 1988 J. Solid State Chem. 75 90Google Scholar

    [37]

    Xiao R J, Li H, Chen L Q 2012 Chem. Mater. 24 4242Google Scholar

    [38]

    Zhu Y, Li J, Ji X, Li T, Jin M, Ou X, Shen X, Wang W, Huang F 2018 AIP Adv. 8 105014Google Scholar

  • [1] 冉沛林, 吴康, 赵恩岳, 王芳卫, 毋志民. 通过Mo掺杂诱导低Li/Ni混排程度增强Li1.2Ni0.13Fe0.13Mn0.54O2可逆容量与循环稳定性. 物理学报, 2024, 73(2): 028201. doi: 10.7498/aps.73.20231361
    [2] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(11): 113101. doi: 10.7498/aps.73.20231681
    [3] 张妮妮, 任娟, 罗澜茜, 刘平平. Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究. 物理学报, 2024, 73(21): 217301. doi: 10.7498/aps.73.20240996
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [5] 许伟良, 党荣彬, 杨佯, 郭秋卜, 丁飞翔, 韩帅, 唐小涵, 刘渊, 左战春, 王晓琦, 杨瑞, 金旭, 容晓晖, 洪捐, 许宁, 胡勇胜. Mg掺杂提升钠离子电池正极材料高电压循环性能. 物理学报, 2023, 72(5): 058802. doi: 10.7498/aps.72.20222098
    [6] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [7] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [8] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [9] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [11] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [12] 陆雅翔, 赵成龙, 容晓晖, 陈立泉, 胡勇胜. 室温钠离子电池材料及器件研究进展. 物理学报, 2018, 67(12): 120601. doi: 10.7498/aps.67.20180847
    [13] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [14] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [15] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [16] 夏中秋, 李蓉萍. 稀土掺杂CdTe太阳电池背接触层ZnTe的第一性原理研究. 物理学报, 2012, 61(1): 017108. doi: 10.7498/aps.61.017108
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  14281
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2019-04-24
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回