搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga液滴沉积速率对GaAs/GaAs (001)量子双环形貌的影响

李志宏 丁召 汤佳伟 王一 罗子江 马明明 黄延彬 张振东 郭祥

引用本文:
Citation:

Ga液滴沉积速率对GaAs/GaAs (001)量子双环形貌的影响

李志宏, 丁召, 汤佳伟, 王一, 罗子江, 马明明, 黄延彬, 张振东, 郭祥

Effect of Ga droplet deposition rate on morphology of concentric quantum double rings

Li Zhi-Hong, Ding Zhao, Tang Jia-Wei, Wang Yi, Luo Zi-Jiang, Ma Ming-Ming, Huang Yan-Bin, Zhang Zhen-Dong, Guo Xiang
PDF
HTML
导出引用
  • 采用液滴外延法在GaAs (001)衬底上制备同心量子双环(concentric quantum double rings, CQDRs), 利用原子力显微镜表征其表面形貌, 并研究Ga液滴沉积速率对CQDRs的影响. 研究结果发现, 随着Ga液滴沉积速率的增加, CQDRs的密度增加, 内外环半径均降低. 根据成核理论中最大团簇密度和Ga液滴沉积速率之间的关系拟合出临界成核原子数目为5, 表明在Ga液滴形成阶段时稳定的Ga原子晶核至少包含5个Ga原子; 根据成核理论和拟合结果绘制成核过程状态转化图以深入理解Ga液滴形成过程. 相关研究结果对液滴外延法制备密度可控的GaAs同心量子双环具有一定的指导意义.
    For the fabrication of particular nanostructures, Stranski-Krastanov (SK) growth mode driven by strain is most widely used. Meanwhile, another technique that is used to form the complex nanostructures is the droplet epitaxy technique, which is based on the deposition of group III element nanoscale droplets onto substrate and followed by the reaction with group V element for crystallization into III-V compound nanostructures. Droplet epitaxy technique is simple and flexible, and it does not require additional complicated processing and has potential to develop various quantum nanostructures. It, unlike standard MBE growth, exploits the sequential supply of group-III and group-V elements to form quantum nanostructures. Quantum rings are a special class of quantum-confinement structure that can be fabricated by the droplet epitaxy technique and have attracted wide attention due to the Aharonov-Bohm effect, which is specific to the topology of a ring. In this paper, GaAs/GaAs (001) concentric quantum double rings (CQDRs) are prepared by droplet epitaxy technique at different Ga droplet deposition rates in monolayer per second (ML/S). The 2 μm × 2 μm atomic force microscope images are obtained to show the morphologies of CQDRs. We study the effects of Ga droplet deposition rates (0.09 ML/s, 0.154 ML/s, 0.25 ML/s, 0.43 ML/s) on CQDRs. The results show that with the increase of Ga droplet deposition rate, the density of CQDRs increases and the radius of inner ring and the radius of outer ring decrease. According to the nucleation theory, through the relationship between the maximum cluster density and the Ga droplet deposition rate, the critical number of atom nucleations is found to be 5, which suggests that the stable Ga atom crystal nucleus should contain at least 5 Ga atoms in the process of forming Ga droplet, and a nucleation state transformation diagram is drawn in order to obtain an insight into the process of forming Ga droplet according to the nucleation theory and fitting results. The research results could be instructive for preparing the GaAs concentric quantum double rings that the density can be controlled by droplet epitaxy.
      通信作者: 郭祥, xguo@gzu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61564002, 11664005)、贵州省科学技术基金(批准号: 黔科合基础[2017]1055)和贵州大学引进人才科研项目(批准号: 贵大人基合字[2015]23号)资助的课题.
      Corresponding author: Guo Xiang, xguo@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002, 11664005), the Guizhou Provincial Science and Technology Foundation, China (Grant No.QKH-[2017]1055), and the Guizhou University Talent Foundation, China (Grant No. GDJHZ-[2015]23).
    [1]

    Lorke A, Luyken R J, Govorov A O, Kotthaus J P 2000 Phys. Rev. Lett. 84 2223Google Scholar

    [2]

    吴洪 2009 物理学报 58 8549Google Scholar

    Wu H 2009 Acta Phys. Sin. 58 8549Google Scholar

    [3]

    Zarenia M, Pereira J M, Peeters F M, Farias G A 2009 Nano Lett. 9 4088Google Scholar

    [4]

    Bayer M, Korkusinski M, Hawrylak P, Gutbrod T, Michel M, Forchel A 2003 Phys. Rev. Lett. 90 186801Google Scholar

    [5]

    Ribeiro E, Govorov A O, Carvalho Jr W, Medeiros-Ribeiro G 2004 Phys. Rev. Lett. 92 126402Google Scholar

    [6]

    刘高福, 郭光杰, 周筑文 2015 四川大学学报(自然科学版) 52 6Google Scholar

    Liu G F, Guo G J, Zhou Z W 2015 J. Sichuan. Univ: Nat. Sci. Ed. 52 6Google Scholar

    [7]

    Chakraborty T, PietilInen P 1994 Phys. Rev. B 50 8460Google Scholar

    [8]

    Teodoro M D, Campo V L, Lopez-Richard V, Marega Jr E, Marques G E, Galvao Gobato Y, Iikawa F, Brasil M J S P, AbuWaar Z Y, Dorogan V G, Mazur Yu I, Benamara M, Salamo G J 2010 Phys. Rev. Lett. 104 086401Google Scholar

    [9]

    Sellers I R, Whiteside V R, Kuskovsky I L, Govorov A O, McCombe B D 2008 Phys. Rev. Lett. 100 136405Google Scholar

    [10]

    Kobayashi S, Jiang C, Kawazu T, Sakaki H 2004 Jpn. J. Appl. Phys. 43 L662Google Scholar

    [11]

    王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召 2018 物理学报 67 080503Google Scholar

    Wang Y, Yang C, Guo X, Wang J H, Liu X F, Wei J M, Lang Q Z, Luo Z J, Ding Z 2018 Acta Phys. Sin. 67 080503Google Scholar

    [12]

    Chikyow T, Koguchi N 1990 Jpn. J. Appl. Phys. 29 L2093Google Scholar

    [13]

    Kim J S, Song J D, Byeon C C, Kang H, Jeong M S, Cho N K, Park S J,Chol W J, Lee J, Kim J S, Leem J Y, Yim S Y 2009 Phys. Status Solidi C 6 802Google Scholar

    [14]

    Kim H D, Okuyama R, Kyhm K, Eto M, Taylor R A, Nicolet A L, Potemski M, Nogues G, Dang L S, Je K C, Kim J, Kyhm J H, Yoen K H, Lee E H, Kim J Y, Han II K, Choi W, Song J D 2016 Nano. Lett. 16 27

    [15]

    Kunrugsa M, Tung K H P, Danner A J, Panyakeow S, Ratanathammaphan S 2015 J. Cryst. Growth 425 287Google Scholar

    [16]

    Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, Kim J, Noda T, Kawabe M, Sakoda K, Kido G, Koguchi N 2005 Nano Lett. 5 425Google Scholar

    [17]

    Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth 323 271Google Scholar

    [18]

    Li X L 2013 J. Cryst. Growth 377 59Google Scholar

    [19]

    Kunrugsa M, Kiravittaya S, Panyakeow S, Ratanathammaphan S 2014 J. Cryst. Growth 402 285Google Scholar

    [20]

    Venables J A, Persaud R, Metcalfe F L, Milne R H, Azim M 1994 J. Phys. Chem. Solids 55 955Google Scholar

    [21]

    Venables J A, Spiller G D T, Hanbucken M 1984 Rep. Prog. Phys. 47 399Google Scholar

  • 图 1  不同Ga液滴沉积速率下CQDRs的AFM形貌图像(a) 0.09 ML/s; (b) 0.154 ML/s; (c) 0.25 ML/s; (d) 0.43 ML/s

    Fig. 1.  AFM morphologies of CQDRs formed at different Ga droplet deposition rates: (a) 0.09 ML/s; (b) 0.154 ML/s; (c) 0.25 ML/s; (d) 0.43 ML/s.

    图 2  GaAs 的CQDRs密度与Ga液滴沉积速率ln-ln图像

    Fig. 2.  Density of GaAs CQDRs plotted as a function of Ga droplet deposition rate in logarithm scale.

    图 3  三种状态的P-i图像(I区, 游离区; II区, 初始凝聚区; III区, 过渡区; IV区, 成核区)

    Fig. 3.  P-i graph of three states. Zone I, extreme incomplete condensation state; zone II, initially incomplete condensation state; zone III, transition state; zone IV, nucleation state.

    图 4  CQDRs 内、外环半径拟合曲线图及测量示意图 (a) 内外环测量示意图; (b) 内环平均半径拟合曲线图; (c) 外环平均半径拟合曲线图

    Fig. 4.  Fitting curves and the measurement schematic diagram of the radii of inner and outer ring for CQDRs: (a) Schematic diagram of inner and outer ring measurement; (b) fitting curve of the inner ring average radii; (c) fitting curve of the outer ring average radii.

    图 5  CQDRs形成过程示意图 (a) Ga液滴形成过程; (b) 第一次晶化过程; (c) 第二次晶化过程

    Fig. 5.  Schematic diagrams of CQDRs formation process: (a) The formation process of Ga droplet; (b) first crystallization process; (c) second crystallization process.

  • [1]

    Lorke A, Luyken R J, Govorov A O, Kotthaus J P 2000 Phys. Rev. Lett. 84 2223Google Scholar

    [2]

    吴洪 2009 物理学报 58 8549Google Scholar

    Wu H 2009 Acta Phys. Sin. 58 8549Google Scholar

    [3]

    Zarenia M, Pereira J M, Peeters F M, Farias G A 2009 Nano Lett. 9 4088Google Scholar

    [4]

    Bayer M, Korkusinski M, Hawrylak P, Gutbrod T, Michel M, Forchel A 2003 Phys. Rev. Lett. 90 186801Google Scholar

    [5]

    Ribeiro E, Govorov A O, Carvalho Jr W, Medeiros-Ribeiro G 2004 Phys. Rev. Lett. 92 126402Google Scholar

    [6]

    刘高福, 郭光杰, 周筑文 2015 四川大学学报(自然科学版) 52 6Google Scholar

    Liu G F, Guo G J, Zhou Z W 2015 J. Sichuan. Univ: Nat. Sci. Ed. 52 6Google Scholar

    [7]

    Chakraborty T, PietilInen P 1994 Phys. Rev. B 50 8460Google Scholar

    [8]

    Teodoro M D, Campo V L, Lopez-Richard V, Marega Jr E, Marques G E, Galvao Gobato Y, Iikawa F, Brasil M J S P, AbuWaar Z Y, Dorogan V G, Mazur Yu I, Benamara M, Salamo G J 2010 Phys. Rev. Lett. 104 086401Google Scholar

    [9]

    Sellers I R, Whiteside V R, Kuskovsky I L, Govorov A O, McCombe B D 2008 Phys. Rev. Lett. 100 136405Google Scholar

    [10]

    Kobayashi S, Jiang C, Kawazu T, Sakaki H 2004 Jpn. J. Appl. Phys. 43 L662Google Scholar

    [11]

    王一, 杨晨, 郭祥, 王继红, 刘雪飞, 魏节敏, 郎啟智, 罗子江, 丁召 2018 物理学报 67 080503Google Scholar

    Wang Y, Yang C, Guo X, Wang J H, Liu X F, Wei J M, Lang Q Z, Luo Z J, Ding Z 2018 Acta Phys. Sin. 67 080503Google Scholar

    [12]

    Chikyow T, Koguchi N 1990 Jpn. J. Appl. Phys. 29 L2093Google Scholar

    [13]

    Kim J S, Song J D, Byeon C C, Kang H, Jeong M S, Cho N K, Park S J,Chol W J, Lee J, Kim J S, Leem J Y, Yim S Y 2009 Phys. Status Solidi C 6 802Google Scholar

    [14]

    Kim H D, Okuyama R, Kyhm K, Eto M, Taylor R A, Nicolet A L, Potemski M, Nogues G, Dang L S, Je K C, Kim J, Kyhm J H, Yoen K H, Lee E H, Kim J Y, Han II K, Choi W, Song J D 2016 Nano. Lett. 16 27

    [15]

    Kunrugsa M, Tung K H P, Danner A J, Panyakeow S, Ratanathammaphan S 2015 J. Cryst. Growth 425 287Google Scholar

    [16]

    Mano T, Kuroda T, Sanguinetti S, Ochiai T, Tateno T, Kim J, Noda T, Kawabe M, Sakoda K, Kido G, Koguchi N 2005 Nano Lett. 5 425Google Scholar

    [17]

    Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth 323 271Google Scholar

    [18]

    Li X L 2013 J. Cryst. Growth 377 59Google Scholar

    [19]

    Kunrugsa M, Kiravittaya S, Panyakeow S, Ratanathammaphan S 2014 J. Cryst. Growth 402 285Google Scholar

    [20]

    Venables J A, Persaud R, Metcalfe F L, Milne R H, Azim M 1994 J. Phys. Chem. Solids 55 955Google Scholar

    [21]

    Venables J A, Spiller G D T, Hanbucken M 1984 Rep. Prog. Phys. 47 399Google Scholar

  • [1] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] 陈星源, 黄瑶, 彭倚天. 电场下悬浮六方氮化硼摩擦特性的研究. 物理学报, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [3] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 李瑞东, 邓金祥, 张浩, 徐智洋, 潘志伟, 孙俊杰, 王贵生. Rubrene∶MoO3混合薄膜的制备及光学和电学性质. 物理学报, 2019, 68(17): 178101. doi: 10.7498/aps.68.20190035
    [6] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [7] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [8] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [9] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [10] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [11] 许晟瑞, 张进城, 李志明, 周小伟, 许志豪, 赵广才, 朱庆伟, 张金凤, 毛维, 郝跃. 金属有机物化学气相沉积生长的a(1120)面GaN三角坑缺陷的消除研究. 物理学报, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [12] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究. 物理学报, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [13] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [14] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 引入n型InGaN/GaN超晶格层提高量子阱特性研究. 物理学报, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [15] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [16] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [17] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [18] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [19] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  7443
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-25
  • 修回日期:  2019-07-02
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回