搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的可调谐的太赫兹波宽频吸收器

陈俊 杨茂生 李亚迪 程登科 郭耿亮 蒋林 张海婷 宋效先 叶云霞 任云鹏 任旭东 张雅婷 姚建铨

引用本文:
Citation:

基于超材料的可调谐的太赫兹波宽频吸收器

陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨

Tunable terahertz wave broadband absorber based on metamaterial

Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan
PDF
HTML
导出引用
  • 随着频谱资源的日益稀缺, 太赫兹波技术在近十几年的时间里得到了越来越多的关注, 并取得了巨大的进展. 由于高吸收、超薄厚度、频率选择性和设计灵活性等优势, 超材料吸收器在太赫兹波段备受关注. 本文设计了一种“T”型结构的超材料太赫兹吸收器, 同时获得了太赫兹多频吸收器和太赫兹波宽频可调谐吸收器. 它们结构参数一致, 唯一的区别是在太赫兹波宽频可调谐吸收器的顶端超材料层上添加了一块方形光敏硅. 这种吸收器都是三层结构, 均由金属基板、匹配电介质层以及顶端超材料层组成. 仿真结果表明, 太赫兹波多频吸收器拥有6个吸收率超过90%的吸收峰, 其平均吸收率高达96.34%. 而太赫兹波宽频可调谐吸收器通过改变硅电导率, 可以控制吸收频带的存在与否, 同时可以调整吸收峰的频率位置, 使吸收峰频率在一个频带宽度大约为30 GHz的范围内调整. 当硅的电导率为1600 S/m时, 吸收率超过90%的频带宽度达到240 GHz, 而且其峰值吸收率达到99.998%.
    With the increasing scarcity of spectrum resources, terahertz wave technologies have attracted more and more attention in recent decades, and have made tremendous progress. Terahertz wave referring to electromagnetic waves with a frequency in a range of 0.1-10 THz has a wide range of applications in wireless communication, nondestructive imaging and remote sensing. Due to the advantages of high absorption, ultra-thin thickness, frequency selectivity and design flexibility, metamaterial absorbers have attracted more attention in terahertz band. In this paper, two terahertz metamaterial absorbers with different performances are designed which are named “T” terahertz multi-band absorber and “T” terahertz tunable broadband absorber, respectively. The absorbers are both comprised of three layers: metal substrate, matched dielectric layer and surface metamaterial layer. The main structures of these two absorbers are composed of four T-shape Au plates on the top of polyimide dielectric layer and an Au sheet acting as a bottom layer. The only difference between these two absorbers is that the terahertz broadband tunable absorber possesses a square photosensitive silicon in the metamaterial layer. The simulations results show that the terahertz multi-band absorber has six absorption peaks at 2.918, 3.7925, 4.986, 6.966, 7.2685, and 7.4665 THz, with the absorptivity peaks of 95.631%, 99.508%, 96.34%, 94.835%, 96.485%, 94.732%, respectively, and the average absorption rate is 96.26%. Terahertz tunable broadband absorber has the characteristics of broadband absorption. When the conductivity of silicon is 1600 S/m, the absorber reaches its absorption peak at 0.786 THz with the absorptivity of 99.998%, and the frequency bandwidth with the absorption rate exceeding 90% reaches 240 GHz. The more interesting thing is that by changing the conductivity of silicon, the terahertz tunable broadband absorber shows the ability to dynamically control the existence of absorption band and adjust the frequency position of absorption peak. For terahertz tunable broadband absorber, the frequency of absorption peak can be regulated in a bandwidth of about 30 GHz. The terahertz wave absorbers designed in this paper possess rather simple structures, therefore the proposed absorbers are easy to fabricate. Because of these excellent properties, the absorbers may have potential applications in optical switch, optical detection, optical imaging, band-stop devices, and other fields.
      通信作者: 杨茂生, 2111803010@stmail.ujs.edu.cn ; 宋效先, songxiaoxian@ujs.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: 2019M651725)、江苏省自然科学基金(批准号: BK20180862, BK20190839)和江苏省研究生科研创新计划项目(批准号: KYCX19_1583)资助的课题
      Corresponding author: Yang Mao-Sheng, 2111803010@stmail.ujs.edu.cn ; Song Xiao-Xian, songxiaoxian@ujs.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M651725), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20180862, BK20190839), and the Graduate Research Innovation Project of Jiangsu Province, China (Grant No. KYCX19_1583)
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    赵碧辉, 文岐业, 谢云松 2011 电子元件与材料 30 82Google Scholar

    Zhao B H, Wen Q Y, Xie Y S 2011 Electr. Comp. Mater. 30 82Google Scholar

    [3]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [4]

    保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187Google Scholar

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187Google Scholar

    [5]

    莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 物理学报 62 237801Google Scholar

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801Google Scholar

    [6]

    Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199Google Scholar

    [7]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144Google Scholar

    [8]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743Google Scholar

    [9]

    程伟, 李九生 2013 电子元件与材料 32 34Google Scholar

    Cheng W, Li J S 2013 Electr. Comp. Mater. 32 34Google Scholar

    [10]

    Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J D, Chen C X, Averitt R D, Zhang X 2019 ACS Photon. 6 830

    [11]

    Chen M, Yan W, Tong X, Zeng L, Li Z, Yang F 2019 J. Opt. 21 035102Google Scholar

    [12]

    Faraji M, Moravvej-Farshi M K, Yousefi L 2015 Opt. Commun. 355 352Google Scholar

    [13]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [14]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J J, Hong B H 2009 Nature 457 706Google Scholar

    [15]

    梁兰菊, 闫昕, 姚建铨 2016 枣庄学院学报 33 10Google Scholar

    Liang L J, Yao J Q 2016 J. Zaozhuang Univ. 33 10Google Scholar

    [16]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [17]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [18]

    陈康, 文岐业, 张怀武 2011 电子元件与材料 30 56Google Scholar

    Chen K, Wen Q Y, Zhang H W 2011 Electr. Comp. Mater. 30 56Google Scholar

    [19]

    颜世桃 2016 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Yao S T 2016 M. S. Thesis (Haerbin: Harbin University of Science and Technology) (in Chinese)

    [20]

    He X J, Yan S T, Ma Q X, Zhang Q F, Jia P, Wu F M, Jiang J X 2015 Opt. Commun. 340 44Google Scholar

    [21]

    Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J 2016 Sci. Rep. 6 32466Google Scholar

  • 图 1  超材料太赫兹波吸收器结构示意图 (a) 多频吸收器示意图; (b) 宽频可调谐吸收器示意图; (c) 吸收器剖面图; (d) 吸收器表面结构图

    Fig. 1.  Structural schematic diagram of metamaterial terahertz wave absorbers: (a) Schematic diagram of multi-band absorber; (b) schematic diagram of broadband tunable absorber; (c) profile of absorber; (d) surface structure of absorber.

    图 2  超材料太赫兹多频吸收器的吸收谱

    Fig. 2.  Absorption spectrum of metamaterial terahertz multi-band absorber.

    图 3  硅电导率为1 S/m时的超材料太赫兹波吸收器吸收谱

    Fig. 3.  Absorption spectra of metamaterial terahertz absorbers when silicon conductivity is 1 S/m.

    图 4  硅电导率在1—1000 S/m范围内六种不同取值下的太赫兹波吸收器吸收谱

    Fig. 4.  Absorption spectra of terahertz absorbers with six different values of silicon conductivity in the range of 1−1000 S/m.

    图 5  硅电导率为1600 S/m时的超材料太赫兹波吸收器吸收谱

    Fig. 5.  Absorption spectra of metamaterial terahertz absorbers when silicon conductivity is 1600 S/m.

    图 6  硅电导率在1000−4000 S/m范围内六种不同取值下的太赫兹波吸收器吸收谱

    Fig. 6.  Absorption spectra of terahertz absorbers with six different values of silicon conductivity in the range of 1000−4000 S/m.

    图 7  多频吸收器超材料结构层在2.918 THz处的磁场分布情况

    Fig. 7.  Distribution of magnetic field at 2.918 THz in metamaterial structure layer of terahertz multi-band absorber.

    图 8  宽频可调谐吸收器在硅电导率为1600 S/m时0.78 THz频率点的上下表面的表面电流分布情况 (a)上表面; (b)下表面

    Fig. 8.  Terahertz tunable broadband absorber of surface current distribution on upper and lower surfaces at 0.78 THz when silicon conductivity is 1600 S/m: (a) Upper surface; (b) lower surface.

    表 1  超材料太赫兹吸收器的结构尺寸

    Table 1.  Structure dimensions of metamaterial terahertz absorber

    参数abwph1h2h3
    取值/μm1248321301
    下载: 导出CSV
  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    赵碧辉, 文岐业, 谢云松 2011 电子元件与材料 30 82Google Scholar

    Zhao B H, Wen Q Y, Xie Y S 2011 Electr. Comp. Mater. 30 82Google Scholar

    [3]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [4]

    保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187Google Scholar

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187Google Scholar

    [5]

    莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武 2013 物理学报 62 237801Google Scholar

    Mo M M, Wen Q Y, Chen Z, Yang Q H, Li S, Jing Y L, Zhang H W 2013 Acta Phys. Sin. 62 237801Google Scholar

    [6]

    Zhai Z, Zhang L, Li X, Xiao S 2019 Opt. Commun. 431 199Google Scholar

    [7]

    Andryieuski A, Lavrinenko A V 2013 Opt. Express 21 9144Google Scholar

    [8]

    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T 2014 Opt. Express 22 22743Google Scholar

    [9]

    程伟, 李九生 2013 电子元件与材料 32 34Google Scholar

    Cheng W, Li J S 2013 Electr. Comp. Mater. 32 34Google Scholar

    [10]

    Zhao X, Wang Y, Schalch J, Duan G, Cremin K, Zhang J D, Chen C X, Averitt R D, Zhang X 2019 ACS Photon. 6 830

    [11]

    Chen M, Yan W, Tong X, Zeng L, Li Z, Yang F 2019 J. Opt. 21 035102Google Scholar

    [12]

    Faraji M, Moravvej-Farshi M K, Yousefi L 2015 Opt. Commun. 355 352Google Scholar

    [13]

    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotechnol. 7 330Google Scholar

    [14]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J J, Hong B H 2009 Nature 457 706Google Scholar

    [15]

    梁兰菊, 闫昕, 姚建铨 2016 枣庄学院学报 33 10Google Scholar

    Liang L J, Yao J Q 2016 J. Zaozhuang Univ. 33 10Google Scholar

    [16]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [17]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [18]

    陈康, 文岐业, 张怀武 2011 电子元件与材料 30 56Google Scholar

    Chen K, Wen Q Y, Zhang H W 2011 Electr. Comp. Mater. 30 56Google Scholar

    [19]

    颜世桃 2016 硕士学位论文 (哈尔滨: 哈尔滨理工大学)

    Yao S T 2016 M. S. Thesis (Haerbin: Harbin University of Science and Technology) (in Chinese)

    [20]

    He X J, Yan S T, Ma Q X, Zhang Q F, Jia P, Wu F M, Jiang J X 2015 Opt. Commun. 340 44Google Scholar

    [21]

    Gong C, Zhan M Z, Yang J, Wang Z G, Liu H T, Zhao Y J 2016 Sci. Rep. 6 32466Google Scholar

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [3] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [6] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [7] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [8] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器. 物理学报, 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [9] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [10] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [11] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控. 物理学报, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [12] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [13] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [14] 马岩冰, 张怀武, 李元勋. 基于科赫分形的新型超材料双频吸收器. 物理学报, 2014, 63(11): 118102. doi: 10.7498/aps.63.118102
    [15] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [16] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [17] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [18] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [19] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究. 物理学报, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
计量
  • 文章访问数:  12516
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-10
  • 修回日期:  2019-09-16
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回