搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究

林启民 张霞 芦启超 罗彦彬 崔建功 颜鑫 任晓敏 黄雪

引用本文:
Citation:

氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究

林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪

First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid

Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue
PDF
HTML
导出引用
  • 利用第一性原理方法, 采用超软赝势库系统研究了硝酸熏蒸石墨烯得到的氧化石墨烯结构的稳定性及电子结构. 基于石墨烯正交元胞的2 × 2超胞模型建立相应的正交晶系硝酸熏蒸氧化石墨烯模型, 包含15个碳原子和2个氧原子. 结果表明熏蒸后包含碳氧双键的氧化石墨烯结构为能量较低的稳定结构, 与实验报道一致. 力学稳定性分析表明该结构的${{C_{66}} > 0,\;{C_{11}} > 0,\;{C_{11}}{C_{22}} > C_{12}^2}$, 处于力学稳定状态. 通过分析熏蒸前后的反应物和生成物, 表明硝酸起催化作用; 且硝酸氧化石墨烯为吸热过程, 反应发生需要外界热源. 通过分析结构的电子特性, 得出氧化石墨烯为直接带隙本征半导体, 带隙值为1.12 eV, 功函数为5.28 eV. 研究结果为硝酸氧化石墨烯的制备及其在光电子器件领域的应用提供了理论依据.
    The stability and electronic structure properties of graphene fumigated by nitric acid are systematically studied by the first-principles method based on ultrasoft pseudopotentials. The model of graphene oxide fumigated by nitric acid is built based on the 2 × 2 supercell model with orthogonal graphene unit cells, which contains 15 carbon and 2 oxygen atoms. The results show that the fumigated graphene containing a carbon atom bonded to an oxygen atom is a stable structure with lower energy, which is consistent with the experimental result. In addition, the mechanical stability analysis shows ${ {C_{66}} > 0,\;{C_{11}} > 0,\;{C_{11}}{C_{22}} > C_{12}^2} $, which satisfies the mechanical stability condition. By analyzing the reactant and product, it can be concluded that the nitric acid acts as catalyst. Moreover, the process of graphene oxidation catalyzed by nitric acid is endothermic and the reaction needs heating. By analyzing the electronic properties of the structure, the graphene oxide is determined to be an intrinsic semiconductor with a direct band gap of 1.12 eV and work function of 5.28 eV. These results provide theoretical basis for preparing the graphene oxide and its applications in the field of optoelectronic devices.
      通信作者: 张霞, xzhang@bupt.edu.cn ; 崔建功, jgcui@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61774021, 61911530133, 61935003)、中央高校基本科研业务费(批准号: 2018XKJC05)、山西省青年科技研究基金(批准号: 201801D221198)和信息光子学与光通信国家重点实验室(北京邮电大学)(批准号: IPOC2019ZT07)资助的课题.
      Corresponding author: Zhang Xia, xzhang@bupt.edu.cn ; Cui Jian-Gong, jgcui@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61774021, 61911530133, 61935003), the Fundamental Research Business Expenses of Central Universities, China (Grant No. 2018XKJC05), the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221198), and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC2019ZT07)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    池明赫, 赵磊 2018 物理学报 67 217101Google Scholar

    Chi M H, Zhao L 2018 Acta Phys. Sin. 67 217101Google Scholar

    [3]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar

    [4]

    刘乐, 汤建, 王琴琴, 时东霞, 张广宇 2018 物理学报 67 226501Google Scholar

    Liu L, Tang J, Wang Q Q, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 226501Google Scholar

    [5]

    蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar

    Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar

    [6]

    王建军, 王飞, 原鹏飞, 孙强, 贾瑜 2012 物理学报 61 106801Google Scholar

    Wang J J, Wang F, Yuan P F, Sun Q, Jia Y 2012 Acta Phys. Sin. 61 106801Google Scholar

    [7]

    王逸飞, 李晓薇 2018 物理学报 67 116301Google Scholar

    Wang Y F, Li X W 2018 Acta Phys. Sin. 67 116301Google Scholar

    [8]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [9]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [10]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [11]

    Yang H, Wu X, Ma Q, Yilihamu A, Yang S N, Zhang Q Q, Feng S C, Yang S 2019 Chemosphere 216 9Google Scholar

    [12]

    Luo D, Zhang F H, Ren Z S, Ren W Y, Yu L, Jiang L L, Ren B S, Wang L, Wang Z M, Yu Y, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 9 100097Google Scholar

    [13]

    莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华 2019 物理学报 68 156501Google Scholar

    Mo J W, Qiu Y W, Yi R B, Wu J, Wang Z K, Zhao L H 2019 Acta Phys. Sin. 68 156501Google Scholar

    [14]

    李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波 2019 物理学报 68 118102Google Scholar

    Li C, Cai L, Li W W, Xie D, Liu B J, Xiang L, Yang X K, Dong D N, Liu J H, Li C, Wei B 2019 Acta Phys. Sin. 68 118102Google Scholar

    [15]

    Yan J A, Xian L, Chou M Y 2009 Phys. Rev. Lett. 103 086802Google Scholar

    [16]

    Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M, Ruoff R S 2008 Science 321 1815Google Scholar

    [17]

    张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋 2017 物理学报 66 197302Google Scholar

    Zhang Y, Shi Y M, Bao Y Z, Yu X, Xie Z X, Ning F 2017 Acta Phys. Sin. 66 197302Google Scholar

    [18]

    Yi W C, Hu T, Su T, Islam R, Miao M S, Liu J Y 2017 J. Mater. Chem. C 5 8498Google Scholar

    [19]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [20]

    房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar

    Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar

    [21]

    杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101Google Scholar

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101Google Scholar

  • 图 1  替位与吸附位组成的石墨烯结构 (a)石墨烯结构; (b)吸附位结构; (c), (d)在同一模型中一个氧原子替换和一个氧原子吸附近邻碳原子结构; (e), (f)在同一结构中一个氧原子替换和一个氧原子吸附不相邻碳原子结构

    Fig. 1.  Graphene structures with substitutional and adsorbed oxygen: (a) Pure graphene; (b) adsorbed oxygen; (c), (d) substitutional and adsorbed oxygen between adjacent carbon; (e), (f) substitutional and adsorbed oxygen between nonadjacent carbon.

    图 2  电荷密度图 (a)结构c及其电荷密度的俯视图; (b)结构c绕y轴转角50°的电荷密度图(黄色是电荷分布, 蓝色是其周期边界剖面)

    Fig. 2.  Charge density of structure c: (a) Top view; (b) rotation 50 degrees around the y axis (yellow represents the charge distribution and blue represents the periodic boundary profile).

    图 3  包含碳氧双键的氧化石墨烯能带结构图(图中红色虚线代表费米能级)

    Fig. 3.  Band structures of the graphene oxide with carbon oxygen double bond (red dashed line represents the Fermi level).

    图 4  石墨烯氧化前后沿z轴方向的势能分布图 (a)石墨烯势能分布图; (b)氧化石墨烯势能分布图

    Fig. 4.  Potential energy along the z-axis: (a) Graphene; (b) gra-phene oxide.

    表 1  结构总能和碳氧原子键长

    Table 1.  Total energy of structures and the bond length of carbon and oxygen.

    结构c结构d结构e结构f
    总能/eV–0.58–0.652.303.09
    替位吸附位替位吸附位替位吸附位替位吸附位
    碳氧键长/Å1.381.241.381.241.461.381.461.38
    碳氧键数量21213131
    注: 以纯净石墨烯结构的总能作为能量零点.
    下载: 导出CSV

    表 2  结构a, c, d的弹性常数

    Table 2.  The elastic constants of structures a, c and d.

    C11/N·m–1C22/N·m–1C12/N·m–1C66/N·m–1
    结构a2445.12438.7441.90.939
    结构c1607.5958.7163.90.986
    结构d975.81295.3463.5–266.9
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    池明赫, 赵磊 2018 物理学报 67 217101Google Scholar

    Chi M H, Zhao L 2018 Acta Phys. Sin. 67 217101Google Scholar

    [3]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar

    [4]

    刘乐, 汤建, 王琴琴, 时东霞, 张广宇 2018 物理学报 67 226501Google Scholar

    Liu L, Tang J, Wang Q Q, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 226501Google Scholar

    [5]

    蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar

    Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar

    [6]

    王建军, 王飞, 原鹏飞, 孙强, 贾瑜 2012 物理学报 61 106801Google Scholar

    Wang J J, Wang F, Yuan P F, Sun Q, Jia Y 2012 Acta Phys. Sin. 61 106801Google Scholar

    [7]

    王逸飞, 李晓薇 2018 物理学报 67 116301Google Scholar

    Wang Y F, Li X W 2018 Acta Phys. Sin. 67 116301Google Scholar

    [8]

    张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar

    Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar

    [9]

    Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar

    [10]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [11]

    Yang H, Wu X, Ma Q, Yilihamu A, Yang S N, Zhang Q Q, Feng S C, Yang S 2019 Chemosphere 216 9Google Scholar

    [12]

    Luo D, Zhang F H, Ren Z S, Ren W Y, Yu L, Jiang L L, Ren B S, Wang L, Wang Z M, Yu Y, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 9 100097Google Scholar

    [13]

    莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华 2019 物理学报 68 156501Google Scholar

    Mo J W, Qiu Y W, Yi R B, Wu J, Wang Z K, Zhao L H 2019 Acta Phys. Sin. 68 156501Google Scholar

    [14]

    李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波 2019 物理学报 68 118102Google Scholar

    Li C, Cai L, Li W W, Xie D, Liu B J, Xiang L, Yang X K, Dong D N, Liu J H, Li C, Wei B 2019 Acta Phys. Sin. 68 118102Google Scholar

    [15]

    Yan J A, Xian L, Chou M Y 2009 Phys. Rev. Lett. 103 086802Google Scholar

    [16]

    Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M, Ruoff R S 2008 Science 321 1815Google Scholar

    [17]

    张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋 2017 物理学报 66 197302Google Scholar

    Zhang Y, Shi Y M, Bao Y Z, Yu X, Xie Z X, Ning F 2017 Acta Phys. Sin. 66 197302Google Scholar

    [18]

    Yi W C, Hu T, Su T, Islam R, Miao M S, Liu J Y 2017 J. Mater. Chem. C 5 8498Google Scholar

    [19]

    张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar

    Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar

    [20]

    房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar

    Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar

    [21]

    杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101Google Scholar

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101Google Scholar

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [5] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [6] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 胡钧, 高嶷. 界面水与催化. 物理学报, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [9] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [10] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [11] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [12] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [13] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [14] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [15] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [16] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [17] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [18] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [19] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [20] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
计量
  • 文章访问数:  10536
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2019-10-23
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回