-
利用第一性原理方法, 采用超软赝势库系统研究了硝酸熏蒸石墨烯得到的氧化石墨烯结构的稳定性及电子结构. 基于石墨烯正交元胞的2 × 2超胞模型建立相应的正交晶系硝酸熏蒸氧化石墨烯模型, 包含15个碳原子和2个氧原子. 结果表明熏蒸后包含碳氧双键的氧化石墨烯结构为能量较低的稳定结构, 与实验报道一致. 力学稳定性分析表明该结构的
${{C_{66}} > 0,\;{C_{11}} > 0,\;{C_{11}}{C_{22}} > C_{12}^2}$ , 处于力学稳定状态. 通过分析熏蒸前后的反应物和生成物, 表明硝酸起催化作用; 且硝酸氧化石墨烯为吸热过程, 反应发生需要外界热源. 通过分析结构的电子特性, 得出氧化石墨烯为直接带隙本征半导体, 带隙值为1.12 eV, 功函数为5.28 eV. 研究结果为硝酸氧化石墨烯的制备及其在光电子器件领域的应用提供了理论依据.The stability and electronic structure properties of graphene fumigated by nitric acid are systematically studied by the first-principles method based on ultrasoft pseudopotentials. The model of graphene oxide fumigated by nitric acid is built based on the 2 × 2 supercell model with orthogonal graphene unit cells, which contains 15 carbon and 2 oxygen atoms. The results show that the fumigated graphene containing a carbon atom bonded to an oxygen atom is a stable structure with lower energy, which is consistent with the experimental result. In addition, the mechanical stability analysis shows${ {C_{66}} > 0,\;{C_{11}} > 0,\;{C_{11}}{C_{22}} > C_{12}^2} $ , which satisfies the mechanical stability condition. By analyzing the reactant and product, it can be concluded that the nitric acid acts as catalyst. Moreover, the process of graphene oxidation catalyzed by nitric acid is endothermic and the reaction needs heating. By analyzing the electronic properties of the structure, the graphene oxide is determined to be an intrinsic semiconductor with a direct band gap of 1.12 eV and work function of 5.28 eV. These results provide theoretical basis for preparing the graphene oxide and its applications in the field of optoelectronic devices.-
Keywords:
- first-principles calculation /
- graphene oxide /
- catalytic
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] 池明赫, 赵磊 2018 物理学报 67 217101Google Scholar
Chi M H, Zhao L 2018 Acta Phys. Sin. 67 217101Google Scholar
[3] 刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar
Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar
[4] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇 2018 物理学报 67 226501Google Scholar
Liu L, Tang J, Wang Q Q, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 226501Google Scholar
[5] 蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar
Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar
[6] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜 2012 物理学报 61 106801Google Scholar
Wang J J, Wang F, Yuan P F, Sun Q, Jia Y 2012 Acta Phys. Sin. 61 106801Google Scholar
[7] 王逸飞, 李晓薇 2018 物理学报 67 116301Google Scholar
Wang Y F, Li X W 2018 Acta Phys. Sin. 67 116301Google Scholar
[8] 张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar
Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar
[9] Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar
[10] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar
[11] Yang H, Wu X, Ma Q, Yilihamu A, Yang S N, Zhang Q Q, Feng S C, Yang S 2019 Chemosphere 216 9Google Scholar
[12] Luo D, Zhang F H, Ren Z S, Ren W Y, Yu L, Jiang L L, Ren B S, Wang L, Wang Z M, Yu Y, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 9 100097Google Scholar
[13] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华 2019 物理学报 68 156501Google Scholar
Mo J W, Qiu Y W, Yi R B, Wu J, Wang Z K, Zhao L H 2019 Acta Phys. Sin. 68 156501Google Scholar
[14] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波 2019 物理学报 68 118102Google Scholar
Li C, Cai L, Li W W, Xie D, Liu B J, Xiang L, Yang X K, Dong D N, Liu J H, Li C, Wei B 2019 Acta Phys. Sin. 68 118102Google Scholar
[15] Yan J A, Xian L, Chou M Y 2009 Phys. Rev. Lett. 103 086802Google Scholar
[16] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M, Ruoff R S 2008 Science 321 1815Google Scholar
[17] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋 2017 物理学报 66 197302Google Scholar
Zhang Y, Shi Y M, Bao Y Z, Yu X, Xie Z X, Ning F 2017 Acta Phys. Sin. 66 197302Google Scholar
[18] Yi W C, Hu T, Su T, Islam R, Miao M S, Liu J Y 2017 J. Mater. Chem. C 5 8498Google Scholar
[19] 张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar
Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar
[20] 房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar
Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar
[21] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101Google Scholar
Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101Google Scholar
-
图 1 替位与吸附位组成的石墨烯结构 (a)石墨烯结构; (b)吸附位结构; (c), (d)在同一模型中一个氧原子替换和一个氧原子吸附近邻碳原子结构; (e), (f)在同一结构中一个氧原子替换和一个氧原子吸附不相邻碳原子结构
Fig. 1. Graphene structures with substitutional and adsorbed oxygen: (a) Pure graphene; (b) adsorbed oxygen; (c), (d) substitutional and adsorbed oxygen between adjacent carbon; (e), (f) substitutional and adsorbed oxygen between nonadjacent carbon.
表 1 结构总能和碳氧原子键长
Table 1. Total energy of structures and the bond length of carbon and oxygen.
结构c 结构d 结构e 结构f 总能/eV –0.58 –0.65 2.30 3.09 替位 吸附位 替位 吸附位 替位 吸附位 替位 吸附位 碳氧键长/Å 1.38 1.24 1.38 1.24 1.46 1.38 1.46 1.38 碳氧键数量 2 1 2 1 3 1 3 1 注: 以纯净石墨烯结构的总能作为能量零点. 表 2 结构a, c, d的弹性常数
Table 2. The elastic constants of structures a, c and d.
C11/N·m–1 C22/N·m–1 C12/N·m–1 C66/N·m–1 结构a 2445.1 2438.7 441.9 0.939 结构c 1607.5 958.7 163.9 0.986 结构d 975.8 1295.3 463.5 –266.9 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] 池明赫, 赵磊 2018 物理学报 67 217101Google Scholar
Chi M H, Zhao L 2018 Acta Phys. Sin. 67 217101Google Scholar
[3] 刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar
Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar
[4] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇 2018 物理学报 67 226501Google Scholar
Liu L, Tang J, Wang Q Q, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 226501Google Scholar
[5] 蒲晓庆, 吴静, 郭强, 蔡建臻 2018 物理学报 67 217301Google Scholar
Pu X Q, Wu J, Guo Q, Cai J Z 2018 Acta Phys. Sin. 67 217301Google Scholar
[6] 王建军, 王飞, 原鹏飞, 孙强, 贾瑜 2012 物理学报 61 106801Google Scholar
Wang J J, Wang F, Yuan P F, Sun Q, Jia Y 2012 Acta Phys. Sin. 61 106801Google Scholar
[7] 王逸飞, 李晓薇 2018 物理学报 67 116301Google Scholar
Wang Y F, Li X W 2018 Acta Phys. Sin. 67 116301Google Scholar
[8] 张晓波, 青芳竹, 李雪松 2019 物理学报 68 096801Google Scholar
Zhang X B, Qing F Z, Li X S 2019 Acta Phys. Sin. 68 096801Google Scholar
[9] Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C 2014 ACS Nano 8 443Google Scholar
[10] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar
[11] Yang H, Wu X, Ma Q, Yilihamu A, Yang S N, Zhang Q Q, Feng S C, Yang S 2019 Chemosphere 216 9Google Scholar
[12] Luo D, Zhang F H, Ren Z S, Ren W Y, Yu L, Jiang L L, Ren B S, Wang L, Wang Z M, Yu Y, Zhang Q Y, Ren Z F 2019 Mater. Today Phys. 9 100097Google Scholar
[13] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华 2019 物理学报 68 156501Google Scholar
Mo J W, Qiu Y W, Yi R B, Wu J, Wang Z K, Zhao L H 2019 Acta Phys. Sin. 68 156501Google Scholar
[14] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波 2019 物理学报 68 118102Google Scholar
Li C, Cai L, Li W W, Xie D, Liu B J, Xiang L, Yang X K, Dong D N, Liu J H, Li C, Wei B 2019 Acta Phys. Sin. 68 118102Google Scholar
[15] Yan J A, Xian L, Chou M Y 2009 Phys. Rev. Lett. 103 086802Google Scholar
[16] Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J, Chen D M, Ruoff R S 2008 Science 321 1815Google Scholar
[17] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋 2017 物理学报 66 197302Google Scholar
Zhang Y, Shi Y M, Bao Y Z, Yu X, Xie Z X, Ning F 2017 Acta Phys. Sin. 66 197302Google Scholar
[18] Yi W C, Hu T, Su T, Islam R, Miao M S, Liu J Y 2017 J. Mater. Chem. C 5 8498Google Scholar
[19] 张梅玲, 陈玉红, 张材荣, 李公平 2019 物理学报 68 087101Google Scholar
Zhang M L, Chen Y H, Zhang C R, Li G P 2019 Acta Phys. Sin. 68 087101Google Scholar
[20] 房彩红, 尚家香, 刘增辉 2012 物理学报 61 047101Google Scholar
Fang C H, Shang J X, Liu Z H 2012 Acta Phys. Sin. 61 047101Google Scholar
[21] 杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101Google Scholar
Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101Google Scholar
计量
- 文章访问数: 10351
- PDF下载量: 117
- 被引次数: 0