搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态金刚石氮空位色心光学调控优化

冯园耀 李中豪 张扬 崔凌霄 郭琦 郭浩 温焕飞 刘文耀 唐军 刘俊

引用本文:
Citation:

固态金刚石氮空位色心光学调控优化

冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊

Optimization of optical control of nitrogen vacancy centers in solid diamond

Feng Yuan-Yao, Li Zhong-Hao, Zhang Yang, Cui Ling-Xiao, Guo Qi, Guo Hao, Wen Huan-Fei, Liu Wen-Yao, Tang Jun, Liu Jun
PDF
HTML
导出引用
  • 在金刚石氮空位色心的高灵敏传感探测研究中, 光学调控是氮空位色心实现高效光学初态制备及信息提取的关键. 本文基于高浓度的金刚石氮空位色心系综检测展开, 采用脉冲光学探测磁共振技术, 系统地研究了激光初态极化时间、信息读取时间与激光功率的关联特性, 并进一步研究了激光入射偏振角与传感信息精度的关系. 探究了各个激光参数对高浓度金刚石氮空位色心系综[111]轴上光学探测磁共振谱中第一个共振峰的影响, 并通过实验结果进行分析, 最终选取在光功率密度为45.8 W/cm2下的最优实验参数(300 μs的极化时间, 700 ns的读取时间, 激光入射角为220°)进行了光学磁探测共振测试, 与优化前的实验参数(极化时间为50 μs, 读取时间为3000 ns, 入射角度为250°)相比, 典型的磁检测灵敏度由21.6 nT/Hz1/2提升到5.6 nT/Hz1/2. 以上研究结果表明我们已经实现光学精密调控的优化测量, 这些研究结果也为高浓度氮空位色心系综精密调控实现温度和生物成像、量子计算及量子信息等领域调控传感检测提供了有效参考.
    The nitrogen-vacancy (NV) centers in diamond have the advantages of stable triaxial structure, ultra-long electron spin coherence time and simple optical readout at room temperature. A nitrogen atom in the diamond crystal replaces a carbon atom and a vacancy is generated at the adjacent position, forming a point defect in the C3v space group structure. Its ground state and excited state are both spin triplet states. It is the key to achieving efficient preparation of optical initial state and extracting NV color center’s information in the researches of highly sensitive sensing magnetic detection, temperature detection, biological imaging, quantum computing, etc. However, there was no systematic study on relevant parameters of laser for high-concentration NV color center’s samples in previous experimental studies. Based on a high concentration diamond NV ensemble, we use pulsed optical detection magnetic resonance (ODMR) technology to systematically study the relationship among laser initial polarization time, information reading time and laser power, and the influence of laser incident polarization angle on the accuracy of sensing information. The effects of various laser parameters on the NV1 peak of ODMR on the [111] axis of the NVs of diamond are also investigated. The contrast of ODMR increases firstly with a sigmoid function and then decreases with an e-exponential function as the information reading time increases. The incident polarization angle of the laser is sinusoidal, with a period of 90°. According to the above experimental results, we finally choose the appropriate experimental parameters at 45.8 W/cm2 (300 μs of polarization, 700 ns, reading time, laser incident angle is 220°) for ODMR test. Compared with previous experimental parameters (polarization time was 50 us, read the time of 3000 ns, laser incident angle was 250°), the experimental results show that the contrast of ODMR increases from 2.1% to 4.6%, and the typical magnetic sensitivity is improved from 21.6 nT/Hz1/2 to 5.6 nT/Hz1/2. The optimization of the optical control of NVs in solid diamond is realized. The above results provide an effective support for the detection of high-sensitivity manipulation sensing based on high-concentration NV ensemble.
      通信作者: 唐军, tangjun@nuc.edu.cn ; 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国家科技重大专项(批准号: 2017YFB0503100)、国家重大科研仪器设备研制专项(批准号: 61727804)、国家自然科学基金(批准号: 51635011, 51727808, 51922009, 61704158)、山西省应用基础研究计划(批准号: 201901D111011(ZD), 201901D211254, 201801D221202, 201801D221213)、山西省重点研发项目(批准号: 201803D121067)、山西省高等学校科技创新项目(批准号: 2019L0558)、中北大学自然科学研究基金(批准号: XJJ201808)和山西省“1331工程”重点学科建设计划经费资助的课题
      Corresponding author: Tang Jun, tangjun@nuc.edu.cn ; Liu Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017YFB0503100), the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. 61727804), the National Natural Science Foundation of China (Grant Nos. 51635011, 51727808, 51922009, 61704158), the Shanxi Provincial Research Foundation for Basic Research, China (Grant Nos. 201901D111011(ZD), 201901D211254, 201801D221202, 201801D221213), the Key Research and Development Foundation of Shanxi Province, China (Grant No. 201803D121067), the Science and Technology Innovation Project of the Higher Education of Shanxi Province, China (Grant No. 2019L0558), the Natural Science Foundation of the North University of China (Grant No. XJJ201808), and the Fund for Shanxi “1331Project” Key Subjects Construction, China
    [1]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [2]

    Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar

    [3]

    Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar

    [4]

    Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar

    [5]

    Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar

    [6]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar

    [7]

    Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar

    [8]

    Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar

    [9]

    Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar

    [10]

    Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar

    [11]

    Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar

    [12]

    Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar

    [13]

    Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar

    [14]

    Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar

    [15]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar

    [16]

    Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar

    [17]

    Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar

    [18]

    Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar

    [19]

    Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar

    [20]

    Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar

    [21]

    Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar

    [22]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [23]

    Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar

    [24]

    Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar

    [25]

    Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar

    [26]

    宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar

    Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar

    [27]

    Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar

    [28]

    Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar

    [29]

    Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar

    [30]

    赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar

    Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar

  • 图 1  (a) 金刚石NV色心的能级结构; (b) 金刚石NV色心实验装置; (c) 实验时序示意图; (d) 沿着[111]轴向施加磁场的ODMR

    Fig. 1.  (a) Energy level structure of NV center; (b) sketch of experimental setup; (c) sketch of timing sequence; (d) ODMR with a magnetic field along the [111] axis.

    图 2  (a) 不同光功率密度下信号随极化时间的变化; (b) 不同光功率密度下极化时间曲线

    Fig. 2.  (a) Variation of signal intensity with polarization time at different laser intensity; (b) polarization time with different laser intensity.

    图 3  (a) 不同光功率密度下信息读取时间和对比度的关系; (b) 不同光功率密度下最佳信息读取时间曲线

    Fig. 3.  (a) Reading time with contrast ratio at different laser intensity; (b) best reading time with different laser intensity.

    图 4  对比度随激光入射偏振角的变化曲线

    Fig. 4.  Contrast ratio changing with different polarization angle of the laser.

    图 5  (a)优化前的ODMR; (b)优化后的ODMR

    Fig. 5.  (a) ODMR before optimization; (b) ODMR after optimization.

  • [1]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [2]

    Suter D, Jelezko F 2017 Prog. Nucl. Magn. Reson. Spectrosc. 98-99 50Google Scholar

    [3]

    Zhang C, Yuan H, Zhang N, Xu L, Zhang J, Li B, Fang J 2018 J. Phys. D: Appl. Phys. 51 155102Google Scholar

    [4]

    Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar

    [5]

    Balasubramanian G, Lazariev A, Arumugam S R, Duan D 2014 Curr. Opin. Chem. Biol. 20 69Google Scholar

    [6]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Hollenberg L C L 2013 Phys. Rev. B 90 12Google Scholar

    [7]

    Yang Z, Shi F, Wang P, Raatz N, Li R, Qin X, Meijer J, Duan C, Ju C, Kong X, Du J 2018 Phys. Rev. B 97 205438Google Scholar

    [8]

    Rendler T, Neburkova J, Zemek O, Kotek J, Zappe A, Chu Z, Cigler P, Wrachtrup J 2017 Nat. Commun. 8 14701Google Scholar

    [9]

    Yang Z, Kong X, Li Z, Yang K, Yu P, Wang P, Wang Y, Qin X, Rong X, Duan C K, Shi F, Du J 2020 Adv. Quantum. Technol. 3 1900136Google Scholar

    [10]

    Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F, Jacques V 2011 Phys. Rev. B 84 195204Google Scholar

    [11]

    Yavkin B V, Soltamov V A, Babunts R A, Anisimov A N, Baranov P G, Shakhov F M, Kidalov S V, Vul' A Y, Mamin G V, Orlinskii S B 2014 Appl. Magn. Reson. 45 1035Google Scholar

    [12]

    Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403Google Scholar

    [13]

    Wang F, Zu C, He L, Wang W B, Zhang W G, Duan L M 2016 Phys. Rev. B 94 064304Google Scholar

    [14]

    Xu L, Yuan H, Zhang N, Zhang J, Bian G, Fan P, Li M, Zhang C, Zhai Y, Fang J 2019 Opt. Express 27 10787Google Scholar

    [15]

    Shi F, Kong X, Wang P, Kong F, Zhao N, Liu R B, Du J 2013 Nat. Phys. 10 21Google Scholar

    [16]

    Poggiali F, Cappellaro P, Fabbri N 2017 Phys. Rev. B 95 195308Google Scholar

    [17]

    Giri R, Gorrini F, Dorigoni C, Avalos C E, Cazzanelli M, Tambalo S, Bifone A 2018 Phys. Rev. B 98 045401Google Scholar

    [18]

    Robledo L, Bernien H, Sar T v d, Hanson R 2011 New J. Phys. 13 025013Google Scholar

    [19]

    Chakraborty T, Zhang J, Suter D 2017 New J. Phys. 19 073030Google Scholar

    [20]

    Fu K M C, Santori C, Barclay P E, Beausoleil R G 2010 Appl. Phys. Lett. 96 121907Google Scholar

    [21]

    Bluvstein D, Zhang Z, Jayich A C B 2019 Phys. Rev. Lett. 122 076101Google Scholar

    [22]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [23]

    Zhang N, Zhang C, Xu L, Ding M, Quan W, Tang Z, Yuan H 2016 Appl. Magn. Reson. 47 589Google Scholar

    [24]

    Ma Y, Rohlfing M, Gali A 2010 Phys. Rev. B 81 041204Google Scholar

    [25]

    Zhu Q, Guo H, Chen Y, Wu D, Zhao B, Wang L, Zhang Y, Zhao R, Du F, Tang J, Liu J 2018 Jpn. J. Appl. Phys. 57 110309Google Scholar

    [26]

    宁伟光, 张扬, 李中豪, 唐军 2019 量子光学学报 25 215Google Scholar

    Ning W G, Zhang Y, Li Z H, Tang J 2019 Journal of Quantum Optics 25 215Google Scholar

    [27]

    Chen X D, Zheng Y, Du B, Li D F, Li S, Dong Y, Guo G C, Sun F W 2019 Phys. Rev. Appl. 11 064024Google Scholar

    [28]

    Fuchs G D, Dobrovitski V V, Toyli D M, Heremans F J, Weis C D, Schenkel T, Awschalom D D 2010 Nat. Phys. 6 668Google Scholar

    [29]

    Alegre T P M, Santori C, Medeiros-Ribeiro G, Beausoleil R G 2007 Phys. Rev. B 76 165205Google Scholar

    [30]

    赵锐, 赵彬彬, 王磊, 郭浩, 唐军, 刘俊 2018 微纳电子技术 55 683Google Scholar

    Zhao R, Zhao B B, Wang L, Guo H, Tang J, Liu J 2018 Micronanoelectronic Technology 55 683Google Scholar

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术. 物理学报, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [3] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [5] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [6] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [7] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [8] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [9] 田宇, 林子栋, 王翔宇, 车良宇, 鲁大为. 基于自旋体系的量子机器学习实验进展. 物理学报, 2021, 70(14): 140305. doi: 10.7498/aps.70.20210684
    [10] 查冰婷, 袁海璐, 马少杰, 陈光宋. 单光束扩束扫描激光周视探测系统参数对探测能力的影响. 物理学报, 2019, 68(7): 070601. doi: 10.7498/aps.68.20181860
    [11] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法. 物理学报, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [12] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究. 物理学报, 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [13] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [14] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [17] 赵虎, 华灯鑫, 毛建东, 周春艳. 基于粒子谱的多波长激光雷达近场大气光学参数校正方法. 物理学报, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [18] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [19] 袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰. 激光脉冲参数对冲击点火的影响. 物理学报, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [20] 李正瀛. 确定SF6-CO2预放电参数的激光脉冲方法. 物理学报, 1984, 33(11): 1529-1537. doi: 10.7498/aps.33.1529
计量
  • 文章访问数:  9186
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-12
  • 修回日期:  2020-04-23
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-01

/

返回文章
返回