搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反式卤素钙钛矿太阳能电池光伏性能的理论研究

张翱 张春秀 陈云琳 张春梅 孟涛

引用本文:
Citation:

反式卤素钙钛矿太阳能电池光伏性能的理论研究

张翱, 张春秀, 陈云琳, 张春梅, 孟涛

Theoretical study of photovoltaic performance for inverted halide perovskite solar cells

Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao
PDF
HTML
导出引用
  • 正式MAPbI3 (MA = CH3NH3+)太阳能电池存在明显的电滞效应现象, 这严重影响其光伏性能, 而反式结构的电池能有效压低电滞效应. 使用AMPS-1D程序对反式MAPbI3太阳能电池进行系统理论模拟和优化, 分别用Cu2O, CuSCN, NiOx作为空穴传输材料, 用PC61BM, TiO2, ZnO作为电子传输材料. 数值模拟反式电池光伏性能随MAPbI3材料厚度变化的情况, 结果显示ITO/NiOx/MAPbI3/ZnO(或TiO2)/Al太阳能电池的光伏性能最好. ITO的功函数从4.6 eV增加到5.0 eV能显著地提高Cu2O—基和CuSCN—基反式MAPbI3太阳能电池的光伏性能, 但对NiOx—基电池光伏性能的提升却很小. 实验上ITO功函数更合理范围为4.6—4.8 eV, 当ITO功函数达到4.8 eV时NiOx —基反式MAPbI3太阳能电池达到最高效率29.588%. 空穴传输材料中空穴迁移率增加能极大地提高反式MAPbI3太阳能电池的光伏性能, 而增加电子传输材料TiO2中电子迁移率几乎不能提高电池的性能. 这些模拟结果将有助于实验上设计更高性能的反式MAPbI3太阳能电池.
    The existence of serious hysteresis effect for regular perovskite solar cells (PSCs) will affect their performances, however, the inverted PSCs can significantly suppress the hysteresis effect. To data, it has been very rarely reported to simulate the inverted planar heterojunction PSCs. In this paper, the effects of hole transport material (HTM), electron transport material (ETM), and ITO work function on performance of inverted MAPbI3 solar cells are carefully investigated in order to design the high-performance inverted PSCs. The inverted MAPbI3 solar cells using Cu2O, CuSCN, or NiOx as HTM, and PC61BM, TiO2, or ZnO as ETM are simulated with the program AMPS-1D. Simulation results reveal that i) the inverted MAPbI3 solar cells choosing NiOx as HTM can effectively improve the photovoltaic performance, and the excellent photovoltaic performance obtained by using TiO2 as ETM is almost the same as by using ZnO as ETM; ii) the ITO work function increasing from 4.6 eV to 5.0 eV can significantly enhance the photovoltaic performances of Cu2O— based and CuSCN— based inverted MAPbI3 solar cells, and the NiOx— based inverted MAPbI3 solar cells have only a minor photovoltaic performance enhancement; iii) based on the reported ITO work function between 4.6 eV and 4.8 eV, the maximum power conversion efficiency (PCE) of 27.075% and 29.588% for CuSCN— based and NiOx— based inverted MAPbI3 solar cells are achieved when the ITO work function reaches 4.8 eV. The numerical simulation gives that the increase of hole mobility in CuSCN and NiOx for ITO/CuSCN/MAPbI3/TiO2/Al and ITO/NiOx/MAPbI3/TiO2/Al can greatly improve the device performance. Experimentally, the maximum hole mobility 0.1 cm2·V–1·s–1 in CuSCN restricts the photovoltaic performance improvement of CuSCN— based inverted MAPbI3 solar cells, which means that there is still room for the improvement of cell performance through increasing the hole mobility in CuSCN. It is found that NiOx with a reasonable energy-band structure and high hole mobility 120 cm2·V–1·s–1 is an ideal HTM in inverted MAPbI3 solar cells. However, the increasing of electron mobility in TiO2 cannot improve the device photovoltaic performance of inverted MAPbI3 solar cells. These simulation results reveal the effects of ETM, HTM, and ITO work function on the photovoltaic performance of inverted MAPbI3 solar cells. Our researches may help to design the high-performance inverted PSCs.
      通信作者: 陈云琳, ylchen@bjtu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61875235)
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    [1]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [2]

    Yin W J, Shi T T, Yan Y T 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [3]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16Google Scholar

    [4]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Meng L, You J B, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [6]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [7]

    Saliba M 2018 Science 359 388Google Scholar

    [8]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [9]

    Liu T H, Chen K, Hu Q, Zhu R, Gong Q H 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [10]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater 25 3727Google Scholar

    [11]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 7 1602922Google Scholar

    [12]

    Shi J J, Zhang H Y, Xu X, Li D M, Luo Y H, Meng Q B 2016 Small 12 5288Google Scholar

    [13]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv. Energy Mater. 7 1602120Google Scholar

    [14]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851Google Scholar

    [15]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [16]

    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J 2015 Nat. Commun. 6 8747Google Scholar

    [17]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [18]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X G, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756Google Scholar

    [19]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [20]

    Fonash S, Arch J, Cuiffi J, et al. A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures http://www.emprl.psu.edu/amps[1997-1-1]

    [21]

    Zhang A, Chen Y L, Yan J 2016 Ieee J. Quantum Elect. 52 1600106Google Scholar

    [22]

    Onoda-Yamamuro N, Matsuo T, Suga H 1992 J. Phys. Chem. Solids. 53 935Google Scholar

    [23]

    Laban W A, Etgar L 2013 Energ. Environ Sci. 6 3249Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic) pp1–89

    [26]

    Muth J F, Kolbas R M, Sharma A K, Oktabrsky S, Narayan J 1999 J. Appl. Phys. 85 7884Google Scholar

    [27]

    Moormann H, Kohl D, Heiland G 1980 Surf. Sci. 100 302Google Scholar

    [28]

    Hagemark K J, Chacka L C 1975 J. Solid State Chem. 15 261Google Scholar

    [29]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475Google Scholar

    [30]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142Google Scholar

    [31]

    Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Appl. Phys. Lett. 104 253508Google Scholar

    [32]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [33]

    Kaiser I, Ernst K, Fischer C H, Konenkamp R, Rost C, Sieber I, Lux-Steiner M C 2001 Sol. Energy Mater. Sol. Cells. 67 89Google Scholar

    [34]

    Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O’Regan B C, Amassian A, Anthopoulos T D 2013 Chem. Commun. 49 4154Google Scholar

    [35]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O’Regan B C, Amassiann A, Anthopoulos T D 2013 Adv. Mater 25 1504Google Scholar

    [36]

    Rao V, Smakula A 1965 J. Appl. Phys. 36 2031Google Scholar

    [37]

    Ratcliff E L, Meyer J, Steirer K X, Armstrong N R, Olson D, Kahn A 2012 Org. Electron. 13 744Google Scholar

    [38]

    Wu H B, Wang L S 1997 J. Chem. Phys. 107 16Google Scholar

    [39]

    Liu M H, Zhou Z J, Zhang P P, Tian Q W, Zhou W H, Kou D X, Wu S X 2016 Opt. Express 24 1349Google Scholar

    [40]

    Rakhshani A E 1991 J. Appl. Phys. 69 2365Google Scholar

    [41]

    Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A 1988 Phys. Rev. B 38 11322Google Scholar

    [42]

    Zuo C T, Ding L M 2015 Small 11 5528Google Scholar

    [43]

    Matsumura H, Fujii A, Kitatani T 1996 Jpn. J. Appl. Phys. 35 5631Google Scholar

    [44]

    Shewchun J, Dubow J, Wilmsen C W, Singh R, Burk D, Wager J F 1979 J. Appl. Phys. 50 2832Google Scholar

    [45]

    Park Y, Choong V, Gao Y, Hsieh B R, Tang C W 1996 Appl. Phys. Lett. 68 2699Google Scholar

    [46]

    Balasubramanian N, Subrahmanyam A 1991 J. Electrochem. Soc. 138 322Google Scholar

    [47]

    Nehate S D, Prakash A, DossMani P, Sundaram, K B 2018 ECS J. Solid State Sc. 7 87

  • 图 1  (a) 反式结构和(b) 正式结构平面异质结 MAPbI3太阳能电池的工作原理示意图

    Fig. 1.  Schematic diagram of working principle in (a) inverted and (b) regular planar heterojunction MAPbI3 solar cells.

    图 2  模拟反式钙钛矿太阳电池 (a) ITO/HTM/MAPbI3/PC61BM/Al, (b) ITO/HTM/MAPbI3/TiO2/Al, (c) ITO/HTM/MAPbI3/ZnO/Al的PCE随MAPbI3厚度的变化, 前、后电极的功函数分别是4.6 eV (ITO) 和4.3 eV (Al)

    Fig. 2.  The PCE of inverted perovskite solar cells for (a) ITO/HTM/MAPbI3/PC61BM/Al, (b) ITO/HTM/MAPbI3/TiO2/Al, and (c) ITO/HTM/MAPbI3/ZnO/Al simulated with the MAPbI3 thickness. Front and back contact work function: 4.6 eV (ITO) and 4.3 eV (Al), respectively.

    图 3  模拟反式钙钛矿太阳电池 (a) ITO/CuO2/MAPbI3/ETM/Al; (b) ITO/CuSCN/MAPbI3/ETM/Al; (c) ITO/NiOx/MAPbI3/ETM/Al的PCE和FF随ITO功函数的变化, ETM表示PC61BM, TiO2, ZnO

    Fig. 3.  Simulation for PCE and FF of inverted perovskite solar cells for (a) ITO/CuO2/MAPbI3/ETM/Al, (b) ITO/CuSCN/MAPbI3/ETM/Al, and (c) ITO/NiOx/MAPbI3/ETM/Al solar cells as a function of ITO work function, here ETM is PC61BM, TiO2, or ZnO.

    图 4  太阳能电池的伏安特性随CuSCN和NiOx中空穴迁移率变化的函数, 前、后电极的功函数分别是: 4.6 eV (ITO) 和4.3 eV (Al) (a) ITO/CuSCN/MAPbI3/TiO2/Al; (b) ITO/NiOx/MAPbI3/TiO2/Al

    Fig. 4.  J-V characteristics of solar cell as a function of hole mobility in CuSCN and NiOx. Front and back contact work function is 4.6 eV (ITO) and 4.3 eV (Al), respectively: (a) ITO/CuSCN/MAPbI3/TiO2/Al; (b) ITO/NiOx/MAPbI3/TiO2/Al.

    表 1  AMPS-1D采用的MAPbI3 和ETM参数

    Table 1.  AMPS-1D parameters set for MAPbI3 and ETM.

    ParametersMAPbI3ZnOTiO2PC61BM
    Dielectric constant23.3[22]8.12[25]100[30]3.9[18]
    Band gap/eV1.51[23]3.40[26]3.2[31]1.9[9]
    Electron affinity/eV3.93[23]4.19[27]4.0[31]3.9[9]
    Thickness/nm40-400909090
    Electron and hole mobility/cm2·V–1·s–150, 50[24]150, 0.0001[28]0.006, 0.006[30]0.0005, 0.0001[18]
    Acceptor concentration/cm–3(2.14 × 1017)[23]000
    Donor concentration/cm–30(5 × 1019)[29](5 × 1019)[30]5 × 1019
    Effective conduction band density/cm–31.66 × 10194.49 × 10181.0 × 10212.5 × 1020
    Effective valence band density/cm–35.41 × 10185.39 × 10182.0 × 10202.5 × 1020
    下载: 导出CSV

    表 2  AMPS-1D采用的HTM参数

    Table 2.  AMPS-1D parameters set for HTM.

    ParametersCuSCNNiOxCu2O
    Dielectric constant10[32]11.9[36]8.8[40]
    Band gap/eV3.4[33]3.7[37]2.17[41]
    Electron affinity/eV1.9[33]1.5[38]3.3[42]
    Thickness/nm200200200
    Electron and hole mobility/cm2·V–1·s–10.0001, 0.01—0.10[34]0.0001, 120[39]0.0001, 10[43]
    Acceptor concentration/cm–3(5 × 1018)[35](2.66 × 1017)[15](5 × 1015)[43]
    Donor concentration/cm–3000
    Effective conduction band density/cm–31.79 × 10192.5 × 10192.5 × 1019
    Effective valence band density/cm–32.51 × 10192.5 × 10192.5 × 1019
    下载: 导出CSV
  • [1]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J B, Liu Y S, Yang Y 2014 Science 345 542Google Scholar

    [2]

    Yin W J, Shi T T, Yan Y T 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [3]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16Google Scholar

    [4]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Meng L, You J B, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [6]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [7]

    Saliba M 2018 Science 359 388Google Scholar

    [8]

    Yu S, Yan Y, Chen Y, Chábera P, Zheng K, Liang Z 2019 J. Mater. Chem. A 7 2015Google Scholar

    [9]

    Liu T H, Chen K, Hu Q, Zhu R, Gong Q H 2016 Adv. Energy Mater. 6 1600457Google Scholar

    [10]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater 25 3727Google Scholar

    [11]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 7 1602922Google Scholar

    [12]

    Shi J J, Zhang H Y, Xu X, Li D M, Luo Y H, Meng Q B 2016 Small 12 5288Google Scholar

    [13]

    Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E 2017 Adv. Energy Mater. 7 1602120Google Scholar

    [14]

    Wang K C, Shen P S, Li M H, Chen S, Lin M W, Chen P, Guo T F 2014 ACS Appl. Mater. Interfaces 6 11851Google Scholar

    [15]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [16]

    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J 2015 Nat. Commun. 6 8747Google Scholar

    [17]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [18]

    Kuang C Y, Tang G, Jiu T G, Yang H, Liu H B, Li B R, Luo W N, Li X G, Zhang W J, Lu F S, Fang J F, Li Y L 2015 Nano Lett. 15 2756Google Scholar

    [19]

    Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [20]

    Fonash S, Arch J, Cuiffi J, et al. A One-Dimensional Device Simulation Program for the Analysis of Microelectronic and Photonic Structures http://www.emprl.psu.edu/amps[1997-1-1]

    [21]

    Zhang A, Chen Y L, Yan J 2016 Ieee J. Quantum Elect. 52 1600106Google Scholar

    [22]

    Onoda-Yamamuro N, Matsuo T, Suga H 1992 J. Phys. Chem. Solids. 53 935Google Scholar

    [23]

    Laban W A, Etgar L 2013 Energ. Environ Sci. 6 3249Google Scholar

    [24]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [25]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic) pp1–89

    [26]

    Muth J F, Kolbas R M, Sharma A K, Oktabrsky S, Narayan J 1999 J. Appl. Phys. 85 7884Google Scholar

    [27]

    Moormann H, Kohl D, Heiland G 1980 Surf. Sci. 100 302Google Scholar

    [28]

    Hagemark K J, Chacka L C 1975 J. Solid State Chem. 15 261Google Scholar

    [29]

    Kim K J, Park Y R 2001 Appl. Phys. Lett. 78 475Google Scholar

    [30]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energ. Environ. Sci. 7 1142Google Scholar

    [31]

    Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Appl. Phys. Lett. 104 253508Google Scholar

    [32]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [33]

    Kaiser I, Ernst K, Fischer C H, Konenkamp R, Rost C, Sieber I, Lux-Steiner M C 2001 Sol. Energy Mater. Sol. Cells. 67 89Google Scholar

    [34]

    Pattanasattayavong P, Ndjawa G O N, Zhao K, Chou K W, Yaacobi-Gross N, O’Regan B C, Amassian A, Anthopoulos T D 2013 Chem. Commun. 49 4154Google Scholar

    [35]

    Pattanasattayavong P, Yaacobi-Gross N, Zhao K, Ndjawa G O N, Li J H, Yan F, O’Regan B C, Amassiann A, Anthopoulos T D 2013 Adv. Mater 25 1504Google Scholar

    [36]

    Rao V, Smakula A 1965 J. Appl. Phys. 36 2031Google Scholar

    [37]

    Ratcliff E L, Meyer J, Steirer K X, Armstrong N R, Olson D, Kahn A 2012 Org. Electron. 13 744Google Scholar

    [38]

    Wu H B, Wang L S 1997 J. Chem. Phys. 107 16Google Scholar

    [39]

    Liu M H, Zhou Z J, Zhang P P, Tian Q W, Zhou W H, Kou D X, Wu S X 2016 Opt. Express 24 1349Google Scholar

    [40]

    Rakhshani A E 1991 J. Appl. Phys. 69 2365Google Scholar

    [41]

    Ghijsen J, Tjeng L H, van Elp J, Eskes H, Westerink J, Sawatzky G A 1988 Phys. Rev. B 38 11322Google Scholar

    [42]

    Zuo C T, Ding L M 2015 Small 11 5528Google Scholar

    [43]

    Matsumura H, Fujii A, Kitatani T 1996 Jpn. J. Appl. Phys. 35 5631Google Scholar

    [44]

    Shewchun J, Dubow J, Wilmsen C W, Singh R, Burk D, Wager J F 1979 J. Appl. Phys. 50 2832Google Scholar

    [45]

    Park Y, Choong V, Gao Y, Hsieh B R, Tang C W 1996 Appl. Phys. Lett. 68 2699Google Scholar

    [46]

    Balasubramanian N, Subrahmanyam A 1991 J. Electrochem. Soc. 138 322Google Scholar

    [47]

    Nehate S D, Prakash A, DossMani P, Sundaram, K B 2018 ECS J. Solid State Sc. 7 87

  • [1] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, 2024, 73(24): 248401. doi: 10.7498/aps.73.20241238
    [2] 张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华. 基于55 nm DICE结构的单粒子翻转效应模拟研究. 物理学报, 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [3] 尉渊, 邢若飞, 杜慧恬, 周倩, 范继辉, 庞智勇, 韩圣浩. 通过pH值精细调控氧化镍纳米颗粒粒度提升反式钙钛矿太阳能电池性能. 物理学报, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [4] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [5] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [6] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [7] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [8] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [9] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [10] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [11] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [12] 张翱, 陈云琳, 闫君, 张春秀. 有机阳离子对卤素钙钛矿太阳能电池性能的影响. 物理学报, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [13] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [14] 贾玉坤, 杨仕娥, 郭巧能, 陈永生, 郜小勇, 谷锦华, 卢景霄. 非晶硅太阳电池宽光谱陷光结构的优化设计. 物理学报, 2013, 62(24): 247801. doi: 10.7498/aps.62.247801
    [15] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] 卓士创, 闫长春. 可见光紫端748 THz处的高透过率负折射率材料模拟研究. 物理学报, 2010, 59(1): 360-364. doi: 10.7498/aps.59.360
    [17] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [19] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟. 物理学报, 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [20] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
计量
  • 文章访问数:  8985
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-02-06
  • 刊出日期:  2020-06-05

/

返回文章
返回