-
松散体结构松散, 是崩塌、滑坡等地质灾害的主要物源, 其致灾范围受含石量和坡度等因素影响较大. 传统的对松散体滑动堆积特性的研究多为宏观或定性分析, 对细观的内在运动机理研究较少. 本文采用离散元方法定量分析了含石量和坡度变化对松散颗粒滑动后的冲程、堆积宽度、最大厚度、堆积面积、堆积轮廓形状、堆积区体积、静堆积角和累积质量等堆积特征值的影响, 并从颗粒的能量和接触力角度探讨了松散体灾变过程中的运动和堆积特征, 以揭示颗粒之间的相互作用机理. 研究结果表明: 含石量在0—70%范围增加时, 冲程、堆积宽度和堆积面积均先增大后递减, 最终累积质量减小; 坡度在30°—65°范围增大时, 冲程、堆积宽度、堆积面积和累积质量均会增大, 最大厚度近似线性减小, 静堆积角近似二次函数减小. 此外, 粗、细颗粒在堆积区的体积占额存在一个临界距离Lc, 当距坡脚线距离L < Lc时, 细颗粒大于粗颗粒所占体积; 当L > Lc时, 细颗粒小于粗颗粒所占体积.Loose materials has loose structure and is the main source of geological disasters such as collapses and landslides. Its hazard range is greatly affected by factors such as stone content and slope. Traditional studies on the sliding and accumulation characteristics of loose materials were mostly macro or qualitative analysis. There is little research on the micro internal motion mechanism. In the present study, discrete element method was used to quantitatively analyze the influence of stone content and slope variation on the characteristic values of loose particles such as stroke, accumulation width, maximum thickness, accumulation area, accumulation contour shape, accumulation volume, static accumulation angle and the cumulative mass. In the meanwhile, the movement and accumulation characteristics of the loose materials during the catastrophe process were explored from the aspect of energy and contact force of the particles, so as to reveal the interaction mechanism between the particles. The results showed that: When the stone content increased in the range of 0 to 70%, the stroke, accumulation width and accumulation area increased firstly and then decreased, and in the end the cumulative mass decreased. As the slope increased from 30° to 65°, the stroke, accumulation width, accumulation area and accumulation mass increased; the maximum thickness decreased approximately linearly, while the static accumulation angle had a decrease similar to quadratic function. In addition, there was a critical distance Lc for the volume share of coarse and fine particles in the accumulation area. When the distance from the toe line was L < Lc, the fine particles were larger than the volume of the coarse particles; when L > Lc, the fine particles were smaller than the volume occupied by coarse particles.
-
Keywords:
- loose materials /
- accumulation characteristics /
- non-spherical particle /
- discrete element method
[1] 赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar
Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar
[2] Hsü K J 1975 Geol. Soc. Am. Bull. 86 129Google Scholar
[3] 贺可强, 周敦云, 王思敬 2004 岩石力学与工程学报 23 2665Google Scholar
He K Q, Zhou D Y, Wang S J 2004 Chin. J. Rock Mech. Eng. 23 2665Google Scholar
[4] Lin G W, Chen H, Hovius N, Horng M J, Dadson S, Meunier P, Lines M 2008 Earth Surf. Process. Landf. 33 1354Google Scholar
[5] 曹叔尤, 刘兴年 2016 四川大学学报(工程科学版) 48 1Google Scholar
Cao S Y, Liu X N 2016 J. Sichuan Univ. (Engineering Science Edition) 48 1Google Scholar
[6] 雷明, 许泽星, 刘兴年, 王协康 2018 工程科学与技术 50 240Google Scholar
Lei M, Xu Z X, Liu X N, Wang X K 2018 Adv. Eng. Sci. 50 240Google Scholar
[7] 雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香 2016 岩土工程学报 38 226Google Scholar
Lei X S, Xie W, Lu K L, Zhu D Y, Chen J X 2016 Chin. J. Geotech. Eng. 38 226Google Scholar
[8] 罗伟韬 2014 硕士学位论文 (北京: 清华大学)
Luo W T 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)
[9] Davies T R, Mcsaveney M J 1999 Can. Geotech. J. 36 313Google Scholar
[10] Joachim S, Carlo F 2003 Eng. Geol. 67 281Google Scholar
[11] Scheiddeger A E 1973 Rock Mech. 5 231Google Scholar
[12] Ritchie A M 1963 Highw. Res. Rec. 17 13
[13] Mancarella D, Hungr O 2010 Can. Geotech. J. 47 827Google Scholar
[14] Mindlin R D 1949 J. Appl. Mech. 16 259Google Scholar
[15] Tsuji Y, Tanaka T, Ishida T 1992 Powder Technol. 71 239Google Scholar
[16] Potyondy D, Cundall P A 2004 Int. J. Rock Mech. Min. Sci. 41 1329Google Scholar
[17] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501Google Scholar
Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501Google Scholar
[18] Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17Google Scholar
[19] Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45Google Scholar
[20] Okura Y, Kitahara H, Sammori T 2000 Eng. Geol. 56 347Google Scholar
[21] Okura Y, Kitahara H, Sammori T, Kawanami A 2000 Eng. Geol. 58 109Google Scholar
[22] Davies T, Mcsaveney M, Hodgson K A 1999 Can. Geotech. J. 36 1096
[23] Davies T 1982 Rock Mech. 15 9Google Scholar
[24] Cundall P A & Strack O D L 1979 Geotechnique 29 47Google Scholar
[25] 王国强, 郝万军, 王继新 2010 离散单元法及其在EDEM上的实践 (西安: 西北工业大学出版社) 第15—18页
Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Practice on EDEM (Vol. 1) (Xian: Northwestern Polytechnical University Press) pp15–18 (in Chinese)
[26] Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53Google Scholar
[27] Jiang Y J, Towhata I 2013 Rock Mech. Rock Eng. 46 713Google Scholar
[28] 舒志乐, 刘新荣, 刘保县, 李月 2010 中南大学学报(自然科学版) 41 1096
Shu Z L, Liu X R, Liu B X, Li Y 2010 J. Cent. South Univ.(Science and Technology) 41 1096
[29] 杨海龙 2018 硕士学位论文 (绵阳: 西南科技大学)
Yang H L 2018 M. S. Thesis (Mianyang: Southwest University of Science and Technology) (in Chinese)
[30] Zhou J W, Yang X G, Hou T X 2017 Environ. Earth Sci. 76 452Google Scholar
[31] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1870Google Scholar
Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1870Google Scholar
[32] Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chem. Eng. Sci. 59 425Google Scholar
-
图 7 松散体滑动堆积全过程(+X视角) (a) t = 400 ms; (b) t = 600 ms; (c) t = 860 ms; (d) t = 1 000 ms; (e) t = 1 200 ms; (f) t = 2 000 ms; (g) 堆积过程形状变化
Fig. 7. Loose materials the whole process of sliding accumulation(+X view): (a) t = 400 ms; (b) t = 600 ms; (c) t = 860 ms; (d) t = 1 000 ms; (e) t = 1 200 ms; (f) t = 2 000 ms; (g) accumulation process changes shape.
表 1 松散颗粒堆积离散元模拟的主要计算参数
Table 1. Main computational parameters of discrete element simulation for loose granular accumulation.
参数 符号 单位 数值 参数 符号 单位 数值 细颗粒基础球粒径 d mm 4.00 静摩擦系数 μps — 0.44 粗颗粒基础球粒径 d mm 14.00 滚动摩擦系数 μpr — 0.05 颗粒密度 ρ kg/m3 2100.00 堆积体质量 M kg 30.00 剪切模量 E MPa 1000.00 时间步长 dt s 6.26616 × 10–5 泊松比 v — 0.26 滑槽尺寸 L × W × H mm 1800 × 350 × 300 恢复系数 e — 0.40 底板尺寸 L × W × H mm 3000 × 2000 × 10 摩擦系数 μpp — 0.42 料箱尺寸 l × w × h mm 400 × 350 × 200 表 2 不同计算条件下静堆积角测量值
Table 2. Measured value of static accumulation angle under different computing conditions.
计算条件 +X方向γ /(°) -X方向γ /(°) 均值γ /(°) 30° 0% 13.58 13.46 13.52 30° 30% 12.94 13.13 13.40 30° 50% 12.48 13.32 12.90 30° 70% 12.03 11.27 11.65 45° 0% 8.25 8.21 8.23 45° 30% 6.85 7.31 7.08 45° 50% 7.28 6.92 7.10 45° 70% 7.78 7.24 7.51 65° 0% 4.17 4.28 2.23 65° 30% 4.25 4.59 2.42 65° 50% 4.26 4.89 2.58 65° 70% 4.96 4.74 2.85 表 3 滑动堆积过程中颗粒的平均动能和接触力均值
Table 3. Average kinetic energy and contact force of granular in the process of sliding accumulation.
参量 细颗粒 粗颗粒 细颗粒与粗颗粒 平均平动动能Et/10–4 J 2.41 169.28 — 平均转动动能Er/10–7 J 4.66 26.03 — 平均法向力Fn/10–6 N 19.04 155.37 31.77 平均切向力Ft/10–3 N 6.84 55.37 11.36 平均法向重叠量/ 10–2 mm 4.01 10.13 4.77 平均切向重叠量/ 10–2 mm 1.05 2.87 1.27 表 4 模拟结果汇总表
Table 4. Summary table of simulation results.
模拟变量 模拟结果 冲程 堆积宽度 最大厚度 堆积面积 累积质量 静堆积角 含石量 ↗↘ ↗↘ ↘↗ ↗↘ ↘(较小) ↘(较小)或↗(较小) 坡度 ↗↗ ↗ ↘ ↗↗ ↗↗ ↘↘ 注: 1. 表中所考虑的均是模拟变量数值增大对模拟结果的影响; 其中, 含石量σ (%)的取值分别为0, 30, 50, 70; 坡度θ (°)的取值分别为30, 45, 65. 2. “↗”表示模拟结果持续增大, “↘”表示模拟结果持续减小; “↗ ↘”表示模拟结果先增大后持续减小, “↘ ↗”表示模拟结果先减小后持续增大, “↗ ↗”表示模拟结果增大明显, “↘ ↘”表示模拟结果减小明显, “↘(较小)”表示模拟结果小幅度减小, “↗(较小)”表示模拟结果小幅度增大. -
[1] 赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar
Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar
[2] Hsü K J 1975 Geol. Soc. Am. Bull. 86 129Google Scholar
[3] 贺可强, 周敦云, 王思敬 2004 岩石力学与工程学报 23 2665Google Scholar
He K Q, Zhou D Y, Wang S J 2004 Chin. J. Rock Mech. Eng. 23 2665Google Scholar
[4] Lin G W, Chen H, Hovius N, Horng M J, Dadson S, Meunier P, Lines M 2008 Earth Surf. Process. Landf. 33 1354Google Scholar
[5] 曹叔尤, 刘兴年 2016 四川大学学报(工程科学版) 48 1Google Scholar
Cao S Y, Liu X N 2016 J. Sichuan Univ. (Engineering Science Edition) 48 1Google Scholar
[6] 雷明, 许泽星, 刘兴年, 王协康 2018 工程科学与技术 50 240Google Scholar
Lei M, Xu Z X, Liu X N, Wang X K 2018 Adv. Eng. Sci. 50 240Google Scholar
[7] 雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香 2016 岩土工程学报 38 226Google Scholar
Lei X S, Xie W, Lu K L, Zhu D Y, Chen J X 2016 Chin. J. Geotech. Eng. 38 226Google Scholar
[8] 罗伟韬 2014 硕士学位论文 (北京: 清华大学)
Luo W T 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)
[9] Davies T R, Mcsaveney M J 1999 Can. Geotech. J. 36 313Google Scholar
[10] Joachim S, Carlo F 2003 Eng. Geol. 67 281Google Scholar
[11] Scheiddeger A E 1973 Rock Mech. 5 231Google Scholar
[12] Ritchie A M 1963 Highw. Res. Rec. 17 13
[13] Mancarella D, Hungr O 2010 Can. Geotech. J. 47 827Google Scholar
[14] Mindlin R D 1949 J. Appl. Mech. 16 259Google Scholar
[15] Tsuji Y, Tanaka T, Ishida T 1992 Powder Technol. 71 239Google Scholar
[16] Potyondy D, Cundall P A 2004 Int. J. Rock Mech. Min. Sci. 41 1329Google Scholar
[17] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501Google Scholar
Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501Google Scholar
[18] Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17Google Scholar
[19] Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45Google Scholar
[20] Okura Y, Kitahara H, Sammori T 2000 Eng. Geol. 56 347Google Scholar
[21] Okura Y, Kitahara H, Sammori T, Kawanami A 2000 Eng. Geol. 58 109Google Scholar
[22] Davies T, Mcsaveney M, Hodgson K A 1999 Can. Geotech. J. 36 1096
[23] Davies T 1982 Rock Mech. 15 9Google Scholar
[24] Cundall P A & Strack O D L 1979 Geotechnique 29 47Google Scholar
[25] 王国强, 郝万军, 王继新 2010 离散单元法及其在EDEM上的实践 (西安: 西北工业大学出版社) 第15—18页
Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Practice on EDEM (Vol. 1) (Xian: Northwestern Polytechnical University Press) pp15–18 (in Chinese)
[26] Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53Google Scholar
[27] Jiang Y J, Towhata I 2013 Rock Mech. Rock Eng. 46 713Google Scholar
[28] 舒志乐, 刘新荣, 刘保县, 李月 2010 中南大学学报(自然科学版) 41 1096
Shu Z L, Liu X R, Liu B X, Li Y 2010 J. Cent. South Univ.(Science and Technology) 41 1096
[29] 杨海龙 2018 硕士学位论文 (绵阳: 西南科技大学)
Yang H L 2018 M. S. Thesis (Mianyang: Southwest University of Science and Technology) (in Chinese)
[30] Zhou J W, Yang X G, Hou T X 2017 Environ. Earth Sci. 76 452Google Scholar
[31] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1870Google Scholar
Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1870Google Scholar
[32] Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chem. Eng. Sci. 59 425Google Scholar
计量
- 文章访问数: 8574
- PDF下载量: 99
- 被引次数: 0