搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散元方法的松散体滑动堆积特性 及影响因素分析

成浩 韩培锋 苏有文

引用本文:
Citation:

基于离散元方法的松散体滑动堆积特性 及影响因素分析

成浩, 韩培锋, 苏有文

Sliding and accumulation characteristics of loose materials and its influencing factors based on discrete element method

Cheng Hao, Han Pei-Feng, Su You-Wen
PDF
HTML
导出引用
  • 松散体结构松散, 是崩塌、滑坡等地质灾害的主要物源, 其致灾范围受含石量和坡度等因素影响较大. 传统的对松散体滑动堆积特性的研究多为宏观或定性分析, 对细观的内在运动机理研究较少. 本文采用离散元方法定量分析了含石量和坡度变化对松散颗粒滑动后的冲程、堆积宽度、最大厚度、堆积面积、堆积轮廓形状、堆积区体积、静堆积角和累积质量等堆积特征值的影响, 并从颗粒的能量和接触力角度探讨了松散体灾变过程中的运动和堆积特征, 以揭示颗粒之间的相互作用机理. 研究结果表明: 含石量在0—70%范围增加时, 冲程、堆积宽度和堆积面积均先增大后递减, 最终累积质量减小; 坡度在30°—65°范围增大时, 冲程、堆积宽度、堆积面积和累积质量均会增大, 最大厚度近似线性减小, 静堆积角近似二次函数减小. 此外, 粗、细颗粒在堆积区的体积占额存在一个临界距离Lc, 当距坡脚线距离L < Lc时, 细颗粒大于粗颗粒所占体积; 当L > Lc时, 细颗粒小于粗颗粒所占体积.
    Loose materials has loose structure and is the main source of geological disasters such as collapses and landslides. Its hazard range is greatly affected by factors such as stone content and slope. Traditional studies on the sliding and accumulation characteristics of loose materials were mostly macro or qualitative analysis. There is little research on the micro internal motion mechanism. In the present study, discrete element method was used to quantitatively analyze the influence of stone content and slope variation on the characteristic values of loose particles such as stroke, accumulation width, maximum thickness, accumulation area, accumulation contour shape, accumulation volume, static accumulation angle and the cumulative mass. In the meanwhile, the movement and accumulation characteristics of the loose materials during the catastrophe process were explored from the aspect of energy and contact force of the particles, so as to reveal the interaction mechanism between the particles. The results showed that: When the stone content increased in the range of 0 to 70%, the stroke, accumulation width and accumulation area increased firstly and then decreased, and in the end the cumulative mass decreased. As the slope increased from 30° to 65°, the stroke, accumulation width, accumulation area and accumulation mass increased; the maximum thickness decreased approximately linearly, while the static accumulation angle had a decrease similar to quadratic function. In addition, there was a critical distance Lc for the volume share of coarse and fine particles in the accumulation area. When the distance from the toe line was L < Lc, the fine particles were larger than the volume of the coarse particles; when L > Lc, the fine particles were smaller than the volume occupied by coarse particles.
      通信作者: 韩培锋, hanpeifeng@yeah.net
    • 基金项目: 省部级-水利部山洪地质灾害防治工程技术研究中心开放基金(2018YFC02)
      Corresponding author: Han Pei-Feng, hanpeifeng@yeah.net
    [1]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [2]

    Hsü K J 1975 Geol. Soc. Am. Bull. 86 129Google Scholar

    [3]

    贺可强, 周敦云, 王思敬 2004 岩石力学与工程学报 23 2665Google Scholar

    He K Q, Zhou D Y, Wang S J 2004 Chin. J. Rock Mech. Eng. 23 2665Google Scholar

    [4]

    Lin G W, Chen H, Hovius N, Horng M J, Dadson S, Meunier P, Lines M 2008 Earth Surf. Process. Landf. 33 1354Google Scholar

    [5]

    曹叔尤, 刘兴年 2016 四川大学学报(工程科学版) 48 1Google Scholar

    Cao S Y, Liu X N 2016 J. Sichuan Univ. (Engineering Science Edition) 48 1Google Scholar

    [6]

    雷明, 许泽星, 刘兴年, 王协康 2018 工程科学与技术 50 240Google Scholar

    Lei M, Xu Z X, Liu X N, Wang X K 2018 Adv. Eng. Sci. 50 240Google Scholar

    [7]

    雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香 2016 岩土工程学报 38 226Google Scholar

    Lei X S, Xie W, Lu K L, Zhu D Y, Chen J X 2016 Chin. J. Geotech. Eng. 38 226Google Scholar

    [8]

    罗伟韬 2014 硕士学位论文 (北京: 清华大学)

    Luo W T 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [9]

    Davies T R, Mcsaveney M J 1999 Can. Geotech. J. 36 313Google Scholar

    [10]

    Joachim S, Carlo F 2003 Eng. Geol. 67 281Google Scholar

    [11]

    Scheiddeger A E 1973 Rock Mech. 5 231Google Scholar

    [12]

    Ritchie A M 1963 Highw. Res. Rec. 17 13

    [13]

    Mancarella D, Hungr O 2010 Can. Geotech. J. 47 827Google Scholar

    [14]

    Mindlin R D 1949 J. Appl. Mech. 16 259Google Scholar

    [15]

    Tsuji Y, Tanaka T, Ishida T 1992 Powder Technol. 71 239Google Scholar

    [16]

    Potyondy D, Cundall P A 2004 Int. J. Rock Mech. Min. Sci. 41 1329Google Scholar

    [17]

    韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501Google Scholar

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501Google Scholar

    [18]

    Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17Google Scholar

    [19]

    Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45Google Scholar

    [20]

    Okura Y, Kitahara H, Sammori T 2000 Eng. Geol. 56 347Google Scholar

    [21]

    Okura Y, Kitahara H, Sammori T, Kawanami A 2000 Eng. Geol. 58 109Google Scholar

    [22]

    Davies T, Mcsaveney M, Hodgson K A 1999 Can. Geotech. J. 36 1096

    [23]

    Davies T 1982 Rock Mech. 15 9Google Scholar

    [24]

    Cundall P A & Strack O D L 1979 Geotechnique 29 47Google Scholar

    [25]

    王国强, 郝万军, 王继新 2010 离散单元法及其在EDEM上的实践 (西安: 西北工业大学出版社) 第15—18页

    Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Practice on EDEM (Vol. 1) (Xian: Northwestern Polytechnical University Press) pp15–18 (in Chinese)

    [26]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53Google Scholar

    [27]

    Jiang Y J, Towhata I 2013 Rock Mech. Rock Eng. 46 713Google Scholar

    [28]

    舒志乐, 刘新荣, 刘保县, 李月 2010 中南大学学报(自然科学版) 41 1096

    Shu Z L, Liu X R, Liu B X, Li Y 2010 J. Cent. South Univ.(Science and Technology) 41 1096

    [29]

    杨海龙 2018 硕士学位论文 (绵阳: 西南科技大学)

    Yang H L 2018 M. S. Thesis (Mianyang: Southwest University of Science and Technology) (in Chinese)

    [30]

    Zhou J W, Yang X G, Hou T X 2017 Environ. Earth Sci. 76 452Google Scholar

    [31]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1870Google Scholar

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1870Google Scholar

    [32]

    Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chem. Eng. Sci. 59 425Google Scholar

  • 图 1  颗粒计算迭代示意图 (a) 力与位移关系; (b) 理论计算

    Fig. 1.  Granular computing iteration diagram: (a) Relationship between force and displacement; (b) theoretical computing.

    图 2  颗粒相互作用时的受力

    Fig. 2.  The forces by particles interacting.

    图 3  颗粒法向力示意图 (a) 法向重叠量; (b) 位置关系

    Fig. 3.  Diagram of normal force of granular: (a) Normal overlap; (b) position relations.

    图 4  松散体滑动堆积模型示意图 (a) 三维数值模型; (b) 侧视图; (c) 俯视图

    Fig. 4.  Diagram of sliding accumulation model of loose accumulation body: (a) Three-dimensional numerical model; (b) side of view; (c) vertical view.

    图 5  单个颗粒大样图 (a) –Z视角; (b) +Y视角

    Fig. 5.  Diagram large sample of single particle: (a) –Z of view; (b) +Y of view.

    图 6  颗粒滑动后累积体积试验值[30]与DEM计算值比较

    Fig. 6.  Comparison of cumulative volume between experiment results[30] and DEM simulation results of granular after sliding.

    图 7  松散体滑动堆积全过程(+X视角) (a) t = 400 ms; (b) t = 600 ms; (c) t = 860 ms; (d) t = 1 000 ms; (e) t = 1 200 ms; (f) t = 2 000 ms; (g) 堆积过程形状变化

    Fig. 7.  Loose materials the whole process of sliding accumulation(+X view): (a) t = 400 ms; (b) t = 600 ms; (c) t = 860 ms; (d) t = 1 000 ms; (e) t = 1 200 ms; (f) t = 2 000 ms; (g) accumulation process changes shape.

    图 8  最终平面堆积形态示意图

    Fig. 8.  The final diagram of plane accumulation form.

    图 9  含石量对堆积形态的影响 (a) 冲程; (b) 堆积宽度; (c) 最大厚度; (d) 堆积面积

    Fig. 9.  Influence of stone content on the accumulation form: (a) Stroke; (b) accumulation width; (c) maximum thickness; (d) accumulation area.

    图 10  静堆积角边界轮廓提取

    Fig. 10.  Static accumulation angle boundary contour acquire.

    图 11  堆积区体积计算平面示意图

    Fig. 11.  Schematic diagram of volume calculation of accumulation area.

    图 12  坡度65°时不同含石量对堆积体积的影响

    Fig. 12.  Influence of different stone contents on the accumulation volume at a slope of 65°.

    图 13  坡度对堆积形态的影响 (a) 冲程; (b) 堆积宽度; (c) 最大厚度; (d) 堆积面积

    Fig. 13.  Influence of slope on the accumulation form: (a) Stroke; (b) accumulation width; (c) maximum thickness; (d) accumulation area.

    图 14  不同坡度下的堆积轮廓平面形状 (a) 含石量0%; (b) 含石量30%; (c) 含石量50%; (d) 含石量70%

    Fig. 14.  Plane accumulation morphology under different slope: (a) Stone content 0%; (b) stone content 30%; (c) stone content 50%; (d) stone content 70%.

    图 15  含石量50%时不同坡度松散颗粒滑动堆积模拟结果 (a) 30°; (b) 45°; (c) 65°

    Fig. 15.  The results of the sliding accumulation simulation of stone content 50% loose granular with different slopes: (a) 30°; (b) 45°; (c) 65°.

    图 16  含石量50%时不同坡度对堆积体积的影响

    Fig. 16.  Influence of different slope of 50% stone content on the accumulation volume.

    图 17  含石量50%时不同坡度颗粒体积对比 (a) 30°; (b) 45°; (c) 65°

    Fig. 17.  The volume comparison of granular with different slopes with 50% stone content: (a) 30°; (b) 45°; (c) 65°.

    图 18  坡度65°时不同含石量对累积质量的影响

    Fig. 18.  Influence of different stone contents on cumulative mass at slope of 65°.

    图 19  含石量50%时不同坡度对累积质量的影响

    Fig. 19.  Influence of different slope on cumulative mass at stone content of 50%.

    图 20  含石量50%时各坡度颗粒累积质量对比 (a) 30°; (b) 45°; (c) 65°

    Fig. 20.  The cumulative mass comparison of granular with different slopes with 50% stone content: (a) 30°; (b) 45°; (c) 65°.

    图 21  颗粒平均动能分布特性 (a) 平动动能; (b) 转动动能

    Fig. 21.  Granular average kinetic energy distribution characteristics: (a)Translational kinetic energy; (b) rotational kinetic energy.

    图 25  颗粒间平均法向接触力概率密度函数(PDF)分布 (a) x方向; (b) y方向; (c) z方向

    Fig. 25.  Probability density functions (PDF) of average normal contact force between granulars: (a) x direction; (b) y direction; (c) z direction.

    图 22  颗粒间平均法向接触力时程曲线 (a) x方向; (b) y方向; (c) z方向

    Fig. 22.  Time-history curve of average normal contact force between granulars: (a) x direction; (b) y direction; (c) z direction.

    图 23  颗粒间平均切向接触力时程曲线 (a) x方向; (b) y方向; (c) z方向

    Fig. 23.  Time-history curve of average tangential contact force between granulars: (a) x direction; (b) y direction; (c) z direction.

    图 24  颗粒间平均接触力重叠量时程曲线 (a) 法向; (b) 切向

    Fig. 24.  Time-history curve of average contact force overlap between granulars: (a) Normal; (b) tangential.

    表 1  松散颗粒堆积离散元模拟的主要计算参数

    Table 1.  Main computational parameters of discrete element simulation for loose granular accumulation.

    参数符号单位数值参数符号单位数值
    细颗粒基础球粒径dmm4.00静摩擦系数μps0.44
    粗颗粒基础球粒径dmm14.00滚动摩擦系数μpr0.05
    颗粒密度ρkg/m32100.00堆积体质量Mkg30.00
    剪切模量EMPa1000.00时间步长dts6.26616 × 10–5
    泊松比v0.26滑槽尺寸L × W × Hmm1800 × 350 × 300
    恢复系数e0.40底板尺寸L × W × Hmm3000 × 2000 × 10
    摩擦系数μpp0.42料箱尺寸l × w × hmm400 × 350 × 200
    下载: 导出CSV

    表 2  不同计算条件下静堆积角测量值

    Table 2.  Measured value of static accumulation angle under different computing conditions.

    计算条件+X方向γ /(°)-X方向γ /(°)均值γ /(°)
    30° 0%13.5813.4613.52
    30° 30%12.9413.1313.40
    30° 50%12.4813.3212.90
    30° 70%12.0311.2711.65
    45° 0%8.258.218.23
    45° 30%6.857.317.08
    45° 50%7.286.927.10
    45° 70%7.787.247.51
    65° 0%4.174.282.23
    65° 30%4.254.592.42
    65° 50%4.264.892.58
    65° 70%4.964.742.85
    下载: 导出CSV

    表 3  滑动堆积过程中颗粒的平均动能和接触力均值

    Table 3.  Average kinetic energy and contact force of granular in the process of sliding accumulation.

    参量细颗粒粗颗粒细颗粒与粗颗粒
    平均平动动能Et/10–4 J2.41169.28
    平均转动动能Er/10–7 J4.6626.03
    平均法向力Fn/10–6 N19.04155.3731.77
    平均切向力Ft/10–3 N6.8455.3711.36
    平均法向重叠量/ 10–2 mm4.0110.134.77
    平均切向重叠量/ 10–2 mm1.052.871.27
    下载: 导出CSV

    表 4  模拟结果汇总表

    Table 4.  Summary table of simulation results.

    模拟变量模拟结果
    冲程堆积宽度最大厚度堆积面积累积质量静堆积角
    含石量↗↘↗↘↘↗↗↘↘(较小)↘(较小)或↗(较小)
    坡度↗↗↗↗↗↗↘↘
    注: 1. 表中所考虑的均是模拟变量数值增大对模拟结果的影响; 其中, 含石量σ (%)的取值分别为0, 30, 50, 70; 坡度θ (°)的取值分别为30, 45, 65. 2. “↗”表示模拟结果持续增大, “↘”表示模拟结果持续减小; “↗ ↘”表示模拟结果先增大后持续减小, “↘ ↗”表示模拟结果先减小后持续增大, “↗ ↗”表示模拟结果增大明显, “↘ ↘”表示模拟结果减小明显, “↘(较小)”表示模拟结果小幅度减小, “↗(较小)”表示模拟结果小幅度增大.
    下载: 导出CSV
  • [1]

    赵永志, 江茂强, 徐平, 郑津洋 2009 物理学报 58 1819Google Scholar

    Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819Google Scholar

    [2]

    Hsü K J 1975 Geol. Soc. Am. Bull. 86 129Google Scholar

    [3]

    贺可强, 周敦云, 王思敬 2004 岩石力学与工程学报 23 2665Google Scholar

    He K Q, Zhou D Y, Wang S J 2004 Chin. J. Rock Mech. Eng. 23 2665Google Scholar

    [4]

    Lin G W, Chen H, Hovius N, Horng M J, Dadson S, Meunier P, Lines M 2008 Earth Surf. Process. Landf. 33 1354Google Scholar

    [5]

    曹叔尤, 刘兴年 2016 四川大学学报(工程科学版) 48 1Google Scholar

    Cao S Y, Liu X N 2016 J. Sichuan Univ. (Engineering Science Edition) 48 1Google Scholar

    [6]

    雷明, 许泽星, 刘兴年, 王协康 2018 工程科学与技术 50 240Google Scholar

    Lei M, Xu Z X, Liu X N, Wang X K 2018 Adv. Eng. Sci. 50 240Google Scholar

    [7]

    雷先顺, 谢沃, 卢坤林, 朱大勇, 陈菊香 2016 岩土工程学报 38 226Google Scholar

    Lei X S, Xie W, Lu K L, Zhu D Y, Chen J X 2016 Chin. J. Geotech. Eng. 38 226Google Scholar

    [8]

    罗伟韬 2014 硕士学位论文 (北京: 清华大学)

    Luo W T 2014 M. S. Thesis (Beijing: Tsinghua University) (in Chinese)

    [9]

    Davies T R, Mcsaveney M J 1999 Can. Geotech. J. 36 313Google Scholar

    [10]

    Joachim S, Carlo F 2003 Eng. Geol. 67 281Google Scholar

    [11]

    Scheiddeger A E 1973 Rock Mech. 5 231Google Scholar

    [12]

    Ritchie A M 1963 Highw. Res. Rec. 17 13

    [13]

    Mancarella D, Hungr O 2010 Can. Geotech. J. 47 827Google Scholar

    [14]

    Mindlin R D 1949 J. Appl. Mech. 16 259Google Scholar

    [15]

    Tsuji Y, Tanaka T, Ishida T 1992 Powder Technol. 71 239Google Scholar

    [16]

    Potyondy D, Cundall P A 2004 Int. J. Rock Mech. Min. Sci. 41 1329Google Scholar

    [17]

    韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501Google Scholar

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501Google Scholar

    [18]

    Nakashima H, Shioji Y, Kobayashi T, Aoki S, Shimizu H, Miyasaka J, Ohdoi K 2011 J. Terramechanics 48 17Google Scholar

    [19]

    Zhou Y C, Xu B H, Yu A B, Zulli P 2002 Powder Technol. 125 45Google Scholar

    [20]

    Okura Y, Kitahara H, Sammori T 2000 Eng. Geol. 56 347Google Scholar

    [21]

    Okura Y, Kitahara H, Sammori T, Kawanami A 2000 Eng. Geol. 58 109Google Scholar

    [22]

    Davies T, Mcsaveney M, Hodgson K A 1999 Can. Geotech. J. 36 1096

    [23]

    Davies T 1982 Rock Mech. 15 9Google Scholar

    [24]

    Cundall P A & Strack O D L 1979 Geotechnique 29 47Google Scholar

    [25]

    王国强, 郝万军, 王继新 2010 离散单元法及其在EDEM上的实践 (西安: 西北工业大学出版社) 第15—18页

    Wang G Q, Hao W J, Wang J X 2010 Discrete Element Method and its Practice on EDEM (Vol. 1) (Xian: Northwestern Polytechnical University Press) pp15–18 (in Chinese)

    [26]

    Jiang Y J, Zhao Y, Towhata I, Liu D X 2015 Powder Technol. 270 53Google Scholar

    [27]

    Jiang Y J, Towhata I 2013 Rock Mech. Rock Eng. 46 713Google Scholar

    [28]

    舒志乐, 刘新荣, 刘保县, 李月 2010 中南大学学报(自然科学版) 41 1096

    Shu Z L, Liu X R, Liu B X, Li Y 2010 J. Cent. South Univ.(Science and Technology) 41 1096

    [29]

    杨海龙 2018 硕士学位论文 (绵阳: 西南科技大学)

    Yang H L 2018 M. S. Thesis (Mianyang: Southwest University of Science and Technology) (in Chinese)

    [30]

    Zhou J W, Yang X G, Hou T X 2017 Environ. Earth Sci. 76 452Google Scholar

    [31]

    赵啦啦, 刘初升, 闫俊霞, 徐志鹏 2010 物理学报 59 1870Google Scholar

    Zhao L L, Liu C S, Yan J X, Xu Z P 2010 Acta Phys. Sin. 59 1870Google Scholar

    [32]

    Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chem. Eng. Sci. 59 425Google Scholar

  • [1] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [2] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢. 玻璃-橡胶混合颗粒体系的弹性行为研究. 物理学报, 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [3] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [4] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [5] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [6] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛. 玻璃-橡胶混合颗粒的力学响应研究. 物理学报, 2015, 64(15): 154502. doi: 10.7498/aps.64.154502
    [7] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟. 物理学报, 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [8] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法. 物理学报, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [9] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [10] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [11] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [12] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [13] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [14] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [15] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [16] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟. 物理学报, 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [17] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布. 物理学报, 2008, 57(8): 4667-4674. doi: 10.7498/aps.57.4667
    [18] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究. 物理学报, 2007, 56(8): 4713-4721. doi: 10.7498/aps.56.4713
    [20] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究. 物理学报, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
计量
  • 文章访问数:  8364
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-14
  • 修回日期:  2020-04-09
  • 上网日期:  2020-05-18
  • 刊出日期:  2020-08-20

/

返回文章
返回