搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相干调制成像的光学检测技术

葛银娟 潘兴臣 刘诚 朱健强

引用本文:
Citation:

基于相干调制成像的光学检测技术

葛银娟, 潘兴臣, 刘诚, 朱健强

Technique of detecting optical components based on coherent modulation imaging

Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang
PDF
HTML
导出引用
  • 作为相干衍射成像技术的一种, 相干调制成像(coherent modulation imaging, CMI)是一种无透镜相位成像技术, 不同于多光斑相位恢复技术, 通过引入已知的强波前调制, CMI可以实现单次曝光下对入射波前的快速重建, 同时结构简单不需要参考光. 除了能够用于相位成像、解决脉冲光束的在线测量问题外, 本文将其用于精密光学元件(峰谷值(peak value, PV) ≤ 0.5λ, λ = 632.8 nm)的面型检测. 为验证其测量能力, 对10片口径80 mm、PV值介于0.1λ和0.5λ之间的石英窗口进行了重复测量, 相比于商业干涉仪的测量结果, CMI算法测量结果的峰谷比值的标准偏差是0.0305λ (λ = 632.8 nm), 均方根(root-mean-square, RMS)的标准偏差为0.0052λ, 对于PV和RMS的测量精度可达到0.1λ和0.01λ, 为研究其极限性能, 同时对PV = λ/20的平行平晶进行了对比测量, 分析了其噪声来源, 考虑到CMI测量算法仍有很大的改进空间, 其有望成为一种区别于干涉测量的新型高精度光学元件检测技术.
    As one of the coherent diffractive imaging (CDI) techniques, coherent modulation imaging (CMI) is a lensless phase imaging technology with diffraction limited resolution in theory. Unlike multiple measurement phase retrieval algorithms, the CMI can achieve fast convergence speed with single-shot measurement by introducing a pre-characterized random phase modulator. Besides, it has simple structure without reference wave based on iterative engine. Despite the fact that the matured phase imaging can be used to implement the on-line wave diagnostics of laser pulse, in this work we accurately measure the face-type of optical component with peak-to-valley value below 0.5λ (λ = 632.8 nm) by using the CMI for the first time. In order to verify its measurement capability, 10 quartz windows with a diameter of 80 mm and PV value between 0.1λ and 0.5λ are repeatedly measured. Compared with the results of commercial interferometer, the root mean square error (Root MSE) of the peak-to-valley (PV) ratio of the results of the CMI is 0.0305λ, and the Root MSE of the root mean square (RMS) is 0.00522λ. The measurement accuracy of PV ratio and RMS can reach 0.1λ and 0.01λ respectively. In addition, the parallel flat with PV ratio = λ/20 is measured and analyzed with CMI, and its noise level is also analyzed. Considering that the potential improvement of CMI is available in the future, the CMI is expected to become a new technique for optical metrology with high precision, which is different from interferometry.
      通信作者: 潘兴臣, xchpan@siom.ac.cn ; 朱健强, jqzhu@siom.ac.cn
      Corresponding author: Pan Xing-Chen, xchpan@siom.ac.cn ; Zhu Jian-Qiang, jqzhu@siom.ac.cn
    [1]

    Rodenburg J M 2008 Adv. Imaging Electron Phys. 150 87Google Scholar

    [2]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801Google Scholar

    [3]

    Shahmoradian S, Tsai E, Diaz A, Guizar-Sicairos M, Raabe J, Spycher L, Britschgi M, Ruf A, Stahlberg H, Holler M 2017 Sci. Rep. 7 1Google Scholar

    [4]

    Hoppe R, Reinhardt J, Hofmann G, Patommel J, Grunwaldt J D, Damsgaard C D, Wellenreuther G, Falkenberg G, Schroer C G 2013 Appl. Phys. Lett. 102 203104Google Scholar

    [5]

    Hüe F, Rodenburg J M, Maiden A M, Sweeney F, Midgley P A 2010 Phys. Rev. B. 82 121415Google Scholar

    [6]

    Shemilt L, Verbanis E, Schwenke J, Estandarte Ana K, Xiong G, Harder R, Parmar N, Yusuf M, Zhang F, Robinson Ian K 2015 Biophys. J. 108 706Google Scholar

    [7]

    Faulkner H M L, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [8]

    Pennycook T J, Martinez G T, Nellist P D, Meyer J C 2019 Ultramicroscopy. 196 131Google Scholar

    [9]

    Kahnt M, Becher J, Brückner D, Fam Y, Sheppard T, Weissenberger T, Wittwer F, Grunwaldt J D, Schwieger W, Schroer C G 2019 Optica 6 1282Google Scholar

    [10]

    Clark J N, Huang X, Harder R J, Robinson I K 2014 Opt. Lett. 39 6066Google Scholar

    [11]

    Odstrčil M, Holler M, Guizar-Sicairos M 2018 Opt. Express 26 12585Google Scholar

    [12]

    Zhang F, Rodenburg J M 2010 Phys. Rev. B 82 121104Google Scholar

    [13]

    Zhang F, Chen B, Morrison G R, Vila-Comamala J, Guizar-Sicairos M, Robinson I K 2016 Nat. Commun. 7 13367Google Scholar

    [14]

    Dong X, Pan X, Liu C, Zhu J 2019 High Power. Laser. Sci. 7 e48Google Scholar

    [15]

    Pan X, Veetil S, Liu C, Tao H, Jiang Y, Lin Q, Li X, Zhu J 2016 Laser Phys. Lett. 13 055001Google Scholar

    [16]

    Dong X, Pan X, Liu C, Zhu J 2018 Opt. Lett. 43 1762Google Scholar

    [17]

    He X, Tao H, Pan X, Liu C, Zhu J 2018 Opt. Express 26 6239Google Scholar

    [18]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K 2007 Appl. Opt. 46 3276Google Scholar

    [19]

    Tao H, Veetil S P, Cheng J, Pan X, Wang H, Liu C, Zhu J 2015 Appl. Opt. 54 1776Google Scholar

    [20]

    柴立群, 于瀛洁, 石琦凯, 许乔, 温圣林, 侯晶 2010 中国激光 37 809Google Scholar

    Chai L Q, Yu Y J, Shi Q K, Xu Q, Wen S L, Hou J 2010 Chin. J. Las. 37 809Google Scholar

  • 图 1  (a) CMI测量光学元件的基本光路; (b) 实验装置照片; (c), (d) 由ePIE算法标定的随机相位板振幅和相位分布, (c)中标尺长度为0.198 mm

    Fig. 1.  (a) Basic scheme for the measurement of optical components using CMI; (b) photo of the experimental setup; (c) amplitude and (d) phase of the center part of the random phase plate reconstructed by ePIE. The scale bar of (c) is 0.198 mm.

    图 2  迭代过程流程图

    Fig. 2.  Flowchart of iterative process.

    图 3  (a) 作为被测物的石英窗口; (b) CCD记录的衍射光斑; (c) 通过相位相减得到的石英窗口相位图, 其中由黑色虚线标记的区域的直径为79.1 mm

    Fig. 3.  (a) Photo of the plate glasses used in experiments; (b) diffraction pattern recorded by CCD; (c) phase map of plate glass obtained directly by phase subtraction. The section marked by the black dashed circle with a diameter of 79.1 mm is used for the analysis of PV and RMS. The constant phase slope is not removed for these calculations.

    图 4  CMI和Zygo干涉仪的测量结果下, PV (a)和RMS (b)的最小二乘线性回归曲线

    Fig. 4.  Least-squares linear regressions of PV (a) and RMS (b) comparing the measurements from the CMI and Zygo interferometer.

    图 5  分别由CMI和干涉仪测量的10个不同石英窗口的相位图

    Fig. 5.  Phase maps of ten different plate glasses measured by CMI and inteferometer.

    图 6  (a) PV = λ/20的平行平晶照片; (b) 光学平面的相位图, 由Zygo干涉仪测得; (c)光学平面得相位图, 由CMI测得, λ = 632.8 nm

    Fig. 6.  (a) Photograph of an optical flat with PV = λ/20; phase maps of the optical flat, measured by the Zygo interferometer (b) and (c) by CMI. λ = 632.8 nm.

    表 1  CMI和干涉仪的测量结果(λ)

    Table 1.  CMI and interferometer results (λ).

    No.${\overline {{\rm{PV}}} _{{\rm{CMI}}}}$${S_{{\rm{pv}}}}$${\rm{P}}{{\rm{V}}_{{\rm{Zygo}}}}$${\overline {{\rm{RMS}}} _{{\rm{CMI}}}}$${S_{{\rm{RMS}}}}$${\rm{RM}}{{\rm{S}}_{{\rm{Zygo}}}}$
    10.1782.40 × 10–30.1480.0546.40 × 10–40.042
    20.1181.20 × 10–30.1690.0284.60 × 10–40.021
    30.1802.40 × 1030.1790.0384.80 × 10–40.030
    40.1596.90 × 10–40.2060.0232.20 × 10–40.025
    50.2601.50 × 10–30.2210.0753.00 × 10–40.068
    60.2542.30 × 10–30.2430.0745.90 × 10–40.072
    70.2783.30 × 10–30.2520.0717.60 × 10–40.061
    80.3312.10 × 10–30.3580.0995.50 × 10–40.099
    90.4332.60 × 10–30.4000.1148.10 × 10–40.102
    100.4752.10 × 10–30.4450.1383.90 × 10–40.124
    下载: 导出CSV
  • [1]

    Rodenburg J M 2008 Adv. Imaging Electron Phys. 150 87Google Scholar

    [2]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801Google Scholar

    [3]

    Shahmoradian S, Tsai E, Diaz A, Guizar-Sicairos M, Raabe J, Spycher L, Britschgi M, Ruf A, Stahlberg H, Holler M 2017 Sci. Rep. 7 1Google Scholar

    [4]

    Hoppe R, Reinhardt J, Hofmann G, Patommel J, Grunwaldt J D, Damsgaard C D, Wellenreuther G, Falkenberg G, Schroer C G 2013 Appl. Phys. Lett. 102 203104Google Scholar

    [5]

    Hüe F, Rodenburg J M, Maiden A M, Sweeney F, Midgley P A 2010 Phys. Rev. B. 82 121415Google Scholar

    [6]

    Shemilt L, Verbanis E, Schwenke J, Estandarte Ana K, Xiong G, Harder R, Parmar N, Yusuf M, Zhang F, Robinson Ian K 2015 Biophys. J. 108 706Google Scholar

    [7]

    Faulkner H M L, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [8]

    Pennycook T J, Martinez G T, Nellist P D, Meyer J C 2019 Ultramicroscopy. 196 131Google Scholar

    [9]

    Kahnt M, Becher J, Brückner D, Fam Y, Sheppard T, Weissenberger T, Wittwer F, Grunwaldt J D, Schwieger W, Schroer C G 2019 Optica 6 1282Google Scholar

    [10]

    Clark J N, Huang X, Harder R J, Robinson I K 2014 Opt. Lett. 39 6066Google Scholar

    [11]

    Odstrčil M, Holler M, Guizar-Sicairos M 2018 Opt. Express 26 12585Google Scholar

    [12]

    Zhang F, Rodenburg J M 2010 Phys. Rev. B 82 121104Google Scholar

    [13]

    Zhang F, Chen B, Morrison G R, Vila-Comamala J, Guizar-Sicairos M, Robinson I K 2016 Nat. Commun. 7 13367Google Scholar

    [14]

    Dong X, Pan X, Liu C, Zhu J 2019 High Power. Laser. Sci. 7 e48Google Scholar

    [15]

    Pan X, Veetil S, Liu C, Tao H, Jiang Y, Lin Q, Li X, Zhu J 2016 Laser Phys. Lett. 13 055001Google Scholar

    [16]

    Dong X, Pan X, Liu C, Zhu J 2018 Opt. Lett. 43 1762Google Scholar

    [17]

    He X, Tao H, Pan X, Liu C, Zhu J 2018 Opt. Express 26 6239Google Scholar

    [18]

    Haynam C, Wegner P, Auerbach J, Bowers M, Dixit S, Erbert G, Heestand G, Henesian M, Hermann M, Jancaitis K 2007 Appl. Opt. 46 3276Google Scholar

    [19]

    Tao H, Veetil S P, Cheng J, Pan X, Wang H, Liu C, Zhu J 2015 Appl. Opt. 54 1776Google Scholar

    [20]

    柴立群, 于瀛洁, 石琦凯, 许乔, 温圣林, 侯晶 2010 中国激光 37 809Google Scholar

    Chai L Q, Yu Y J, Shi Q K, Xu Q, Wen S L, Hou J 2010 Chin. J. Las. 37 809Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [4] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [6] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [7] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [8] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [9] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [10] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [14] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [17] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [18] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  8780
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 修回日期:  2020-04-24
  • 上网日期:  2020-05-28
  • 刊出日期:  2020-09-05

/

返回文章
返回