-
近年来, 基于超表面的完美吸波体成为了各国学者的研究热点. 其中圆极化波的旋向选择吸波体更是在手性传感器和卫星通讯等领域有着广泛的应用. 为此, 本文提出了一种基于方形开口环结构超表面的圆极化波的旋向选择吸波体. 该吸波器能够吸收入射的右旋圆极化波, 而完全反射左旋圆极化波. 首先从理论上分析产生旋向选择吸波的理论条件, 然后在该理论的指导下设计出了符合条件的超表面单元. 该单元由金属-介质板-金属三层构成, 顶层是改进后的方形开口环金属结构, 中间层是FR4介质板, 底层是全金属板. 对超表面单元进行数值仿真, 仿真结果表明, 该单元在7.2 GHz处可以选择性吸收右旋圆极化波而反射左旋圆极化波, 并且保持圆极化波的旋向不改变. 右旋圆极化波的吸波率达到了90%以上, 而左旋圆极化波的吸波率低于19%. 该方法不仅适用于微波段, 而且可以被推广到更高频段, 有望在卫星通讯领域得到广泛应用.In recent years, due to their features nonexistent in natural matirials, the perfect absorbers based on metasurfaces have become a hot research point. Although great progress has been made, the absorbers with spin-selection are rarely reported. However, the absorbers with spin-selection have more widespread applications in chiral sensors and satellite communication. Therefore, a spin-selection absorber based on the metasurface with modified square split-ring structure is proposed. Firstly, the theoretical conditions for generating the spin-selection absorption are analyzed theoretically, and then the qualified metasurface unit cell is designed under the guidance of the theory. We design an asymmetric modified square split-ring resonator to break both the n-fold (n>2) rotational symmetry and mirror symmetry. The unit cell is composed of three layers, i.e. the top layer, which is a modified square split-ring, the middle layer, which is an FR4 dielectric plate with a thickness of 4 mm, and the bottom layer, which is an all-metal plate acting as the reflecting incident wave. In order to obtain the optimal performance, the designed meta-atom is optimized by CST Microwave Studio, a well-known commercial full wave simulation software.The numerical simulation results show that the unit cell can selectively absorb the right-handed circularly polarized waves and reflect left-handed circularly polarized waves at 7.2 GHz. A maximum absorption rate for the absorption of right-handed circularly polarized (RCP) waves reaches a value higher than 90%, while the absorption rate of the other spin state is kept lower than 19%. In addition, to meet the need of practical applications, the absorption performance is also further investigated under different oblique incident angles, with the wave vectors confined in the x-z plane and y-z plane, respectively. Finally, to further understand the mechanism of spin-selection absorber, the surface current distributions are also simulated for LCP and RCP wave, respectively. The different surface current distributions are obtained for incident LCP and RCP wave, which is a solid evidence for spin-selection absorption. This paper offers a reference for the generation of spin-selection absorber. The proposed method not only is suitable for microwave region, but also can be extended to higher frequencies, and hopefully it can be widely used in the field of communication.
-
Keywords:
- metasurface /
- absorber /
- spin-selection
[1] Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3637Google Scholar
[2] Gau J R J, Burnside W D, Gilreath M 1997 IEEE Trans. Antennas Propag. 45 1286Google Scholar
[3] Michielssen E, Sajer J M, Ranjithan S, Mittra R 1993 IEEE Trans. Microwave Theory Tech. 41 1024Google Scholar
[4] 孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar
Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar
[5] 郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar
Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar
[6] 李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[7] 周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar
[8] Jing L Q, Wang Z J, Zheng B, et al. 2018 NPG Asia Materials 10 888Google Scholar
[9] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar
[10] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar
Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar
[11] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[12] Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar
[13] Jing L Q, Wang Z J, Yang Y H, et al. 2018 IEEE Trans. Antennas Propag. 66 7148Google Scholar
[14] Wang C Y, Liang J G, Xiao Y, Cai T, Hou H S, Li H P 2019 Opt. Express 27 14942Google Scholar
[15] Wang L L, Huang X J, Li M H, Dong J F 2019 Opt. Express 27 25983Google Scholar
[16] Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715Google Scholar
[17] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[18] Zhou Y L, Cao X Y, Gao J, Yang H H, Zheng Y J, Li S J 2019 Mater. Res. Express 6 015802
[19] Li M H, Guo L Y, Dong J F, Yang H L 2014 J. Phys. D: Appl. Phys. 47 185102Google Scholar
[20] Cheng Y Z, Chen H R, Zhao J C, Mao X S, Cheng Z Z 2018 Opt. Mater. Express 8 1399Google Scholar
[21] Shang S, Yang S Z, Liu J, Shan M, Cao H L 2016 J. Appl. Phys. 120 045106Google Scholar
-
图 4 两种不同情况下不同入射角度的LCP和RCP波的吸收率谱线 (a), (c) RCP波吸收谱线; (b), (d) LCP波吸收谱线
Fig. 4. The absorption spectra of LCP and RCP wave under different incident angles with the wave vectors confined in the x-z plane and y-z plane, respectively: (a), (c) The absorption spectra of LCP wave; (b), (d) the absorption spectra of RCP wave.
图 5 在谐振频率7.2 GHz处的表面电流和能量损耗密度分布 (a)右旋波圆极化波入射下电流分布; (b)左旋圆极化波入射下电流分布; (c)右旋圆极化波入射下能量损耗; (d)左旋圆极化波入射下能量损耗
Fig. 5. Surface current distributions on the unit cell at 7.2 GHz: (a) Surface current under the incidence of RCP wave; (b) surface current under the incidence of LCP wave; (c) energy loss under the incidence of RCP wave; (d) energy under the incidence of LCP of wave.
图 7 两种不同情况下对于不同入射角度的LCP和RCP波的仿真和测试的吸收率谱线 (a), (c) RCP波吸收谱线; (b), (d) LCP波吸收谱线
Fig. 7. The simulated and measured absorption spectra of LCP and RCP wave under different incident angles with the wave vectors confined in the x-z plane and y-z plane, respectively: (a), (c) The absorption spectra of LCP wave; (b), (d) the absorption spectra of RCP wave.
-
[1] Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3637Google Scholar
[2] Gau J R J, Burnside W D, Gilreath M 1997 IEEE Trans. Antennas Propag. 45 1286Google Scholar
[3] Michielssen E, Sajer J M, Ranjithan S, Mittra R 1993 IEEE Trans. Microwave Theory Tech. 41 1024Google Scholar
[4] 孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar
Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar
[5] 郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar
Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar
[6] 李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[7] 周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar
Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar
[8] Jing L Q, Wang Z J, Zheng B, et al. 2018 NPG Asia Materials 10 888Google Scholar
[9] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar
Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar
[10] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar
Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar
[11] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar
[12] Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar
[13] Jing L Q, Wang Z J, Yang Y H, et al. 2018 IEEE Trans. Antennas Propag. 66 7148Google Scholar
[14] Wang C Y, Liang J G, Xiao Y, Cai T, Hou H S, Li H P 2019 Opt. Express 27 14942Google Scholar
[15] Wang L L, Huang X J, Li M H, Dong J F 2019 Opt. Express 27 25983Google Scholar
[16] Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715Google Scholar
[17] Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar
[18] Zhou Y L, Cao X Y, Gao J, Yang H H, Zheng Y J, Li S J 2019 Mater. Res. Express 6 015802
[19] Li M H, Guo L Y, Dong J F, Yang H L 2014 J. Phys. D: Appl. Phys. 47 185102Google Scholar
[20] Cheng Y Z, Chen H R, Zhao J C, Mao X S, Cheng Z Z 2018 Opt. Mater. Express 8 1399Google Scholar
[21] Shang S, Yang S Z, Liu J, Shan M, Cao H L 2016 J. Appl. Phys. 120 045106Google Scholar
计量
- 文章访问数: 6487
- PDF下载量: 190
- 被引次数: 0