搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究

潘晓剑 包黎红 宁军 赵凤岐 朝洛蒙 刘子忠

引用本文:
Citation:

多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究

潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠

Synthesis and optical absorption properties of nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders

Pan Xiao-Jian, Bao Li-Hong, Ning Jun, Zhao Feng-Qi, Chao Luo-Meng, Liu Zi-Zhong
PDF
HTML
导出引用
  • 在真空环境中采用固相烧结法成功制备出了多元稀土六硼化物Nd1–xEuxB6纳米粉末. 系统研究了Eu掺杂对纳米NdB6物相、形貌及光吸收性能的影响规律. 结果表明, 所有合成的纳米粉末物相均为单相的CsCl型晶体结构, 具有立方形貌, 平均晶粒尺度为30 nm. 光吸收实验结果表明, 随着Eu掺杂量的增加, 纳米NdB6透射光波长从629 nm红移至1000 nm以上, 表现出了透射光波长的可调特性. 此外, NdB6和EuB6同步辐射吸收图谱表明, Nd和Eu原子分别以Nd3+和Eu2+形式存在于纳米NdB6和EuB6中, 充分说明了Eu掺杂使NdB6传导电子数量减少, 从而导致其等离子共振频率能量的降低. 采用第一性原理计算了NdB6和EuB6的能带结构、态密度、介电函数以及等离子共振频率能量, 从而定性解释了Eu掺杂使NdB6透射光波长红移的特性.
    Nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders are successfully synthesized by the simple solid-state reaction in vacuum condition for the first time. The effect of Eu doping on the crystal structure, grain morphology, microstructure and optical absorption properties of nanocrystalline NdB6 are investigated by X-ray diffraction, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and optical absorption measurements. The results show that all the synthesized samples have a single-phase CsCl-type cubic structure with space group of Pm-3m. The SEM results show that the average grain size of the synthesized Nd1–xEuxB6 powders is 50 nm. The HRTEM results show that nanocrystalline Nd1–xEuxB6 has good crystallinity. The results of optical absorption show that the absorption valley of nanocrystalline Nd1–xEuxB6 is redshifted from 629 nm to higher than 1000 nm with the increase of Eu doping, indicating that the transparency of NdB6 is tunable. Additionally, the X-ray absorption near-edge structure spectra μ(E) around the Nd and Eu L3 edges for nanocrystalline NdB6 and EuB6 show that total valence of Nd ion is estimated at +3 in nanocrystalline NdB6 and total valence of Eu ion in nanocrystalline EuB6 is +2. Therefore, the Eu-doping into NdB6 effectively reduces the electron conduction number and it leads the plasma resonance frequency energy to decrease. In order to further qualitatively explain the influence of Eu doping on the optical absorption mechanism, the first principle calculations are used to calculate the band structure, density of states, dielectric function and plasma resonance frequency energy. The calculation results show that the electron band of NdB6 and EuB6 cross the Fermi energy, indicating that they are typical conductors. In addition, the plasmon resonance frequency can be described in the electron energy loss function. The plasmon resonance frequency energy of NdB6 and EuB6 are 1.98 and 1.04 eV, which are corresponding to the absorption valley of 626.26 and 1192.31 nm, respectively. This confirms that the first principle calculation results are in good consistence with the experimental optical absorption valley. Therefore, as an efficient optical absorption material, nanocrystalline Nd1–xEuxB6 powders can expand the optical application scope of rare earth hexaborides.
      通信作者: 包黎红, baolihong@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51662034)、内蒙古自治区自然科学基金联合基金(批准号: 2019LH05001)和内蒙古师范大学研究生科研创新基金(批准号: CXJJS19113)资助的课题
      Corresponding author: Bao Li-Hong, baolihong@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51662034), the Program of Joint Fund of the Natural Science Foundation of Inner Mongolia, China (Grant No. 2019LH05001), and the Graduate Reaserch Innovation Fund of Inner Mongolia Normal University, China (Grant No. CXJJS19113)
    [1]

    Muz I, Kurban M 2020 J. Alloys Compd. 842 155983Google Scholar

    [2]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [3]

    Wang X B, Ji F 2020 J. Nanosci. Nanotechnol. 20 7464Google Scholar

    [4]

    Xiao Q F, Zheng X P, Bu W B, Ge W Q, Zhang S J, Chen F, Xing H Y, Ren Q G, Fan W P, Zhao K L, Hua Y Q, Shi J L 2013 J. Am. Chem. Soc. 135 13041Google Scholar

    [5]

    Lv R C, Yang P P, He F, Gai S, Li C X, Dai Y L, Yang G X, Lin J 2015 ACS Nano 9 1630

    [6]

    Yuan Y F, Zhang L, Hu L J, Wang W, Min G H 2011 J. Solid State Chem. 184 3364Google Scholar

    [7]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [8]

    Schelm S, Smith G B 2003 Appl. Phys. Lett. 82 4346Google Scholar

    [9]

    Lai B H, Chen D H 2013 Acta Biomater. 9 7556Google Scholar

    [10]

    Chen M C, Lin Z W, Ling M H 2016 ACS Nano 10 93Google Scholar

    [11]

    Wang Y, Fang C, Li X, Li Z P, Liu B H 2019 J. Alloys Compd. 803 757Google Scholar

    [12]

    Xiao L H, Su Y C, Zhou X Z, Chen H Y, Tan J, Hu T, Yan J, Peng P 2012 Appl. Phys. Lett. 101 041913Google Scholar

    [13]

    肖立华, 伏云昌, 苏玉长, 张鹏飞, 彭平 2011 原子与分子物理学报 28 0176

    Xiao L H, Fu Y C, Su Y C, Zhang P F, Peng P 2011 J. At. Mol. Phys. 28 0176

    [14]

    Xiao L H, Su Y C, Chen H Y, Jiang M, Liu S N, Hu Z X, Liu R F, Peng P, Mu Y L, Zhu D Y 2011 AIP Adv. 1 022140Google Scholar

    [15]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223Google Scholar

    [16]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 Phys. Chem. Chem. Phys. 18 19165Google Scholar

    [17]

    Bao L H, Chao L M, Li Y J, Ming M, Yibole B, Tegus O 2015 J. Alloys Compd. 651 19Google Scholar

    [18]

    Bao L H, Chao L M, Wei W, Tegus O 2015 Mater. Lett. 139 187Google Scholar

    [19]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Compd. 617 235Google Scholar

    [20]

    Zhang X J, Tsai Y T, Wu S M, Lin Y C, Lee J F, Sheu H S, Cheng B M, Liu R S 2016 ACS Appl. Mater. Interfaces 8 19612Google Scholar

    [21]

    Kerisit S N, Prange M P 2020 Chem. Geol. 534 119460Google Scholar

    [22]

    Qi X P, Bao L H, Chao L M, Tegus O 2018 Physica B 530 312Google Scholar

    [23]

    Kimura S, Nanba T, Tomikawa M, Kunii S, Kasuya T 1992 Phys. Rev. B 46 12196Google Scholar

    [24]

    Choi Y G, Lee K A, Lee K S 2007 Met. Mater. Int. 13 269Google Scholar

    [25]

    Hernandez R E R, Marcos F R, Serrano A, Salas E, Hussainova I, Fernandez J F 2019 Nanomaterials 9 1473Google Scholar

  • 图 1  稀土六硼化物RB6 (R = Nd, Eu)的晶体结构, 其中左图为以硼(B)原子为中心的晶体结构, 右图为以稀土(R)原子为中心的晶体结构

    Fig. 1.  Crystal structure of RB6 (R = Nd, Eu). Left panel shows the crystal structure centered on the boron atom. Right panel shows the crystal structure centered on rare earth atom.

    图 2  反应温度为1150 ℃下制备的纳米Nd1–xEuxB6的XRD图谱

    Fig. 2.  XRD patterns of the nanocrystalline Nd1–xEuxB6 prepared at 1150 ℃.

    图 3  纳米晶Nd1–xEuxB6 (x = 0, 0.2, 0.4, 0.6, 0.8)的SEM照片

    Fig. 3.  SEM images of nanocrystalline Nd1–xEuxB6 (x = 0, 0.2, 0.4, 0.6, 0.8).

    图 4  (a) 纳米Nd0.4Eu0.6B6的TEM照片; (b) HRTEM照片和快速傅里叶变换照片; (c) 纳米Nd0.4Eu0.6B6的HAADF照片; (d)−(f) Nd0.4Eu0.6B6中的Nd, Eu和B元素分布

    Fig. 4.  (a) TEM image of nanocrystalline Nd0.4Eu0.6B6; (b) HRTEM image and fast Fourier transform pattern; (c) HAADF image of Nd0.4Eu0.6B6; (d)−(f) elemental distribution of Nd, Eu and B for nanocrystalline Nd0.4Eu0.6B6.

    图 5  纳米Nd1–xEuxB6粉末光吸收曲线

    Fig. 5.  Optical absorption spectrum of nanocrystalline Nd1–xEuxB6 powder.

    图 6  第一性原理计算的能带结构图 (a) NdB6; (b) EuB6

    Fig. 6.  First-principle calculation results of band structure: (a) NdB6; (b) EuB6.

    图 7  第一性原理计算的总态密度和部分态密度曲线 (a) NdB6; (b) EuB6

    Fig. 7.  First-principle calculation results of total density of states (TDOS) and partial density of states (PDOS) curves: (a) NdB6; (b) EuB6.

    图 8  介电函数的实部ε1和虚部ε2 (a) NdB6; (b) EuB6

    Fig. 8.  Real part ε1 and imaginary part ε2 of the dielectric function: (a) NdB6; (b) EuB6.

    图 9  能量损失函数曲线 (a) NdB6; (b) EuB6

    Fig. 9.  Energy loss function curves: (a) NdB6; (b) EuB6.

    图 10  纳米NdB6和EuB6同步辐射吸收图谱 (a) Nd-L3和Eu-L3边总X射线吸收光谱; (b) Nd-L3边局部放大; (c) Eu-L3边局部放大

    Fig. 10.  Synchrotron radiation absorption spectrum of nanocrystalline NdB6 and EuB6: (a) total X-ray absorption spectra of Nd-L3 and Eu-L3; (b) partial enlargement of Nd-L3; (c) partial enlargement of Eu-L3.

  • [1]

    Muz I, Kurban M 2020 J. Alloys Compd. 842 155983Google Scholar

    [2]

    Chen X B, Mao S S 2007 Chem. Rev. 107 2891Google Scholar

    [3]

    Wang X B, Ji F 2020 J. Nanosci. Nanotechnol. 20 7464Google Scholar

    [4]

    Xiao Q F, Zheng X P, Bu W B, Ge W Q, Zhang S J, Chen F, Xing H Y, Ren Q G, Fan W P, Zhao K L, Hua Y Q, Shi J L 2013 J. Am. Chem. Soc. 135 13041Google Scholar

    [5]

    Lv R C, Yang P P, He F, Gai S, Li C X, Dai Y L, Yang G X, Lin J 2015 ACS Nano 9 1630

    [6]

    Yuan Y F, Zhang L, Hu L J, Wang W, Min G H 2011 J. Solid State Chem. 184 3364Google Scholar

    [7]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [8]

    Schelm S, Smith G B 2003 Appl. Phys. Lett. 82 4346Google Scholar

    [9]

    Lai B H, Chen D H 2013 Acta Biomater. 9 7556Google Scholar

    [10]

    Chen M C, Lin Z W, Ling M H 2016 ACS Nano 10 93Google Scholar

    [11]

    Wang Y, Fang C, Li X, Li Z P, Liu B H 2019 J. Alloys Compd. 803 757Google Scholar

    [12]

    Xiao L H, Su Y C, Zhou X Z, Chen H Y, Tan J, Hu T, Yan J, Peng P 2012 Appl. Phys. Lett. 101 041913Google Scholar

    [13]

    肖立华, 伏云昌, 苏玉长, 张鹏飞, 彭平 2011 原子与分子物理学报 28 0176

    Xiao L H, Fu Y C, Su Y C, Zhang P F, Peng P 2011 J. At. Mol. Phys. 28 0176

    [14]

    Xiao L H, Su Y C, Chen H Y, Jiang M, Liu S N, Hu Z X, Liu R F, Peng P, Mu Y L, Zhu D Y 2011 AIP Adv. 1 022140Google Scholar

    [15]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 CrystEngComm 18 1223Google Scholar

    [16]

    Bao L H, Qi X P, Tana, Chao L M, Tegus O 2016 Phys. Chem. Chem. Phys. 18 19165Google Scholar

    [17]

    Bao L H, Chao L M, Li Y J, Ming M, Yibole B, Tegus O 2015 J. Alloys Compd. 651 19Google Scholar

    [18]

    Bao L H, Chao L M, Wei W, Tegus O 2015 Mater. Lett. 139 187Google Scholar

    [19]

    Bao L H, Wurentuya B, Wei W, Li Y J, Tegus O 2014 J. Alloys Compd. 617 235Google Scholar

    [20]

    Zhang X J, Tsai Y T, Wu S M, Lin Y C, Lee J F, Sheu H S, Cheng B M, Liu R S 2016 ACS Appl. Mater. Interfaces 8 19612Google Scholar

    [21]

    Kerisit S N, Prange M P 2020 Chem. Geol. 534 119460Google Scholar

    [22]

    Qi X P, Bao L H, Chao L M, Tegus O 2018 Physica B 530 312Google Scholar

    [23]

    Kimura S, Nanba T, Tomikawa M, Kunii S, Kasuya T 1992 Phys. Rev. B 46 12196Google Scholar

    [24]

    Choi Y G, Lee K A, Lee K S 2007 Met. Mater. Int. 13 269Google Scholar

    [25]

    Hernandez R E R, Marcos F R, Serrano A, Salas E, Hussainova I, Fernandez J F 2019 Nanomaterials 9 1473Google Scholar

  • [1] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [2] 石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文. 金属卤化物钙钛矿纳米光电材料的研究进展. 物理学报, 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [3] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [4] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] 程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛. 蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性. 物理学报, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [7] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [8]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [10] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [11] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [12] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [13] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [14] 包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴. 放电等离子烧结原位合成LaxCe1-xB6化合物及性能研究. 物理学报, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [15] 李晓娜, 张忻, 张久兴, 包黎红, 张宁, 张繁星. Pr1-xCexB6 阴极材料的原位反应合成及性能研究. 物理学报, 2012, 61(22): 228104. doi: 10.7498/aps.61.228104
    [16] 杨 光, 陈正豪. 脉冲激光沉积Ag:BaTiO3纳米复合薄膜及其光学特性. 物理学报, 2006, 55(8): 4342-4346. doi: 10.7498/aps.55.4342
    [17] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  6595
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 修回日期:  2020-09-21
  • 上网日期:  2021-01-24
  • 刊出日期:  2021-02-05

/

返回文章
返回