搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P-I-N型锡铅钙钛矿太阳电池性能的限制因素及解决策略

王俪璇 李仁杰 刘辉 王鹏阳 石标 赵颖 张晓丹

引用本文:
Citation:

P-I-N型锡铅钙钛矿太阳电池性能的限制因素及解决策略

王俪璇, 李仁杰, 刘辉, 王鹏阳, 石标, 赵颖, 张晓丹

Limiting factors and improving solutions of P-I-N type tin-lead perovskite solar cells performance

Wang Li-Xuan, Li Ren-Jie, Liu Hui, Wang Peng-Yang, Shi Biao, Zhao Ying, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 锡铅钙钛矿太阳电池已被证明可以用于全钙钛矿叠层太阳电池中, 作为窄带隙底电池进一步提高器件光电转换效率. 目前, P-I-N型锡铅钙钛矿太阳电池的最高效率为21.7%, 明显低于铅基钙钛矿太阳电池. 本文分析了限制其性能提高的主要因素, 并针对性地总结了近几年研究工作者们提出的有效解决策略, 主要包括: 1)通过添加富锡化合物、强还原剂或含大的有机阳离子的化合物以抑制Sn2+氧化, 减少锡铅钙钛矿材料p型掺杂程度, 降低电池开路电压损耗; 2)通过调控组分、改变钙钛矿薄膜制备方法、溶剂工程或添加含功能性基团的化合物以延缓锡铅钙钛矿薄膜结晶生长速率, 提高薄膜质量; 3)通过选用合适的电子传输层或空穴传输层, 减少能级失配对载流子传输的影响或避免载流子传输层的本身不稳定性对器件的影响. 最后, 本文展望了锡铅钙钛矿太阳电池的未来发展, 认为其不仅有望实现高效稳定的单结太阳电池, 而且还可以应用于高效全钙钛矿叠层太阳电池.
    In order to break through the limit of Shockley-Queisser (SQ) radiation and further improve the efficiency of perovskite solar cells, tin-lead perovskite solar cells have widely and successfully been used as narrow-bandgap bottom cells in all-perovskite tandem solar cells. The highest efficiency of tin-lead perovskite solar cells has recently reached 21.7%, which, however, is still lower than that of lead-based perovskite solar cells. This article analyzes the main factors that limit the further improving of their performances, and summarizes the effective solutions proposed by researchers in recent years. The main points are as follows: 1) by adding tin-rich additives, strong reducing agents or compounds containing large organic cations, Sn2+ oxidation is inhibited and the p-doped degree of tin-lead perovskite and the open-circuit voltage loss are reduced; 2) through regulating the composition, changing the method of preparing the perovskite film, adding functional groups or solvent engineering, the crystallization rate of tin-lead perovskite film is delayed and the crystallization quality of the film is improved; 3) by selecting an appropriate electron transport layer or hole transport layer the influence of energy level mismatch on carrier transport or the instability of carrier transport layer on devices can be avoided. Finally, the future development of Sn-Pb perovskite solar cells is prospected. It is believed that the tin-lead perovskite solar cells can realize not only the high efficiency and stable single-junction solar cells, but also high efficiency perovskite-perovskite tandem solar cells.
      通信作者: 张晓丹, xdzhang@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500103)、国家自然科学基金(批准号: 61674084)、高等学校学科创新引智计划(111 计划)(批准号: B16027)、天津市军民融合科技重大专项(批准号: 18ZXJMTG00220)和中央高校基本科研业务费(批准号: 63201171, 63201173)资助的课题
      Corresponding author: Zhang Xiao-Dan, xdzhang@nankai.edu.cn
    • Funds: Project supported by the National Research Program of China (Grant No. 2018YFB1500103), the National Natural Science Foundation of China (Grant No. 61674084), the 111 Project, China (Grant No. B16027), the Tianjin Civil Military Integration Project, China (Grant No. 18ZXJMTG00220), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 63201171, 63201173)
    [1]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html.

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [4]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar

    [5]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S 2014 J. Phys. Chem. Lett. 5 1004Google Scholar

    [6]

    Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G 2015 J. Phys. Chem. Lett. 6 3503Google Scholar

    [7]

    Eperon G E, Leijtens T, Bush K A, et al. 2016 Science 354 86Google Scholar

    [8]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [9]

    Klug M T, Milot R L, Patel J B, Green T, Sansom H C, Farrar M D, Ramadan A J, Martani S, Wang Z P, Wenger B, Ball J M, Langshaw L, Petrozza A, Johnston M B, Herz L M, Snaith H J 2020 Energy Environ. Sci. 14 112

    [10]

    Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J 2020 Adv. Mater. 32 1907392

    [11]

    Yao H H, Zhou F G, Li Z Z, Ci Z P, Ding L M, Jin Z W 2020 Adv. Sci. 7 1903540Google Scholar

    [12]

    Zhu Z L, Chueh C C, Li N, Mao C Y, Jen A K Y 2018 Adv. Mater. 30 1703800Google Scholar

    [13]

    Li J M, Cao H L, Jiao W B, Wang Q, Wei M D, Cantone I, Lü J, Abate A 2020 Nat. Commun. 11 310Google Scholar

    [14]

    Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J 2012 Molecular, Clinical and Environmental Toxicology (Vol. 101) (Jackson: Springer, Basel.) p133

    [15]

    Nishimura K, Kamarudin M A, Hirotani D, Hamada K, Shen Q, Iikubo S, Minemoto T, Yoshino K, Hayase S 2020 Nano Energy 74 104858Google Scholar

    [16]

    Leijtens T, Prasanna R, Parker A G, Toney M F, McGehee M D 2017 ACS Energy Lett. 2 2159Google Scholar

    [17]

    Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar

    [18]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [19]

    Ricciarelli D, Meggiolaro D, Ambrosio F, Angelis F D 2020 ACS Energy Lett. 5 2787Google Scholar

    [20]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [21]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc 138 14750Google Scholar

    [22]

    Yang Z B, Rajagopal A, Jen A K Y 2017 Adv. Mater. 29 1704418Google Scholar

    [23]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herza L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar

    [24]

    Wang J K, Datta K, Li J Y, Verheijen M A, Zhang D, Wienk M M, Janssen R A J 2020 Adv. Energy Mater. 10 2000566Google Scholar

    [25]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P H, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [26]

    Liao W Q, Zhao D W, Yu Y, Shrestha N, Ghimire K, Grice C R, Wang C L, Xiao Y Q, Cimaroli A J, Ellingson R J, Podraza N J, Zhu K, Xiong R G, Yan Y F 2016 J. Am. Chem. Soc. 138 12360Google Scholar

    [27]

    Chi D, Huang S H, Zhang M Y, Mu S Q, Zhao Y, Chen Y, You J B 2018 Adv. Funct. Mater. 28 1804603Google Scholar

    [28]

    Wang C L, Song Z N, Li C W, Zhao D W, Yan Y F 2019 Adv. Funct. Mater. 29 1808801Google Scholar

    [29]

    Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z Y 2018 Adv. Mater. 30 1705998Google Scholar

    [30]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [31]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [32]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [33]

    Gupta S, Cahen D, Hodes G 2018 J. Phys. Chem. C 122 13926Google Scholar

    [34]

    Liao W Q, Zhao D W, Yu Y, Grice C R, Wang C L, Cimaroli A J, Schulz P, Meng W W, Zhu K, Xiong R G, Yan Y F 2016 Adv. Mater. 28 9333Google Scholar

    [35]

    Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, and Seok S I 2016 J. Am. Chem. Soc. 138 3974Google Scholar

    [36]

    Zong Y X, Zhou Z M, Chen M, Padture N P. Zhou Y Y 2018 Adv. Energy Mater. 8 1800997Google Scholar

    [37]

    Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar

    [38]

    Xu X B, Chueh C C, Yang Z B, Rajagopal A, Xu J Q, Jo S B, Jen A K Y 2017 Nano Energy 34 392Google Scholar

    [39]

    Zhu Z L, Li N, Zhao D B, Wang L D, Jen A K Y 2019 Adv. Energy Mater. 9 1802774Google Scholar

    [40]

    Saidaminov M I, Spanopoulos I, Abed J, Ke W J, Wicks J, Kanatzidis M G, and Sargent E H 2020 ACS Energy Lett. 5 1153Google Scholar

    [41]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [42]

    Wei M Y, Xiao K, Walters G, Lin R X, Zhao Y B, Saidaminov M I, Todorović P, Johnston A, Huang Z R, Chen H J, Li A D, Zhu J, Yang Z Y, Wang Y K, Proppe A H, Kelley S O, Hou Y, Voznyy O, Tan H R, Sargent E H 2020 Adv. Mater. 32 1907058Google Scholar

    [43]

    Ramirez D, Schutt K, Wang Z P, Pearson A J, Ruggeri E, Snaith H J, Stranks S D, Jaramillo F 2018 ACS Energy Lett. 3 2246Google Scholar

    [44]

    Li C H, Pan Y M, Hu J L, Qiu S D, Zhang C L, Yang Y Z, Chen S, Liu X H, Brabec C J, Nazeeruddin M K, Mai Y H, Guo F 2020 ACS Energy Lett. 5 1386Google Scholar

    [45]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [46]

    Green M A, Baillie A H, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [47]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv. 5 eaav0693Google Scholar

    [48]

    Shi T T, Zhang H S, Meng W W, Teng Q, Liu M Y, Yang X B, Yan Y F, Yip H L, Zhao Y J 2017 J. Mater. Chem. A 5 15124Google Scholar

    [49]

    Yang Z B, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T, Jen A K Y 2016 Adv. Mater. 28 8990Google Scholar

    [50]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [51]

    Prasanna R, Leijtens T, Dunfield S P, Raiford J A, Wolf E J, Swifter S A, Werner J, Eperon G E, Paula C d, Palmstrom A F, Boyd C C, Hest M F A M, Bent S F, Teeter G, Berry J J, McGehee M D 2019 Nat. Energy 4 939Google Scholar

    [52]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [53]

    Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2018 Adv. Energy Mater. 9 1803135

    [54]

    Lian X M, Chen J H, Zhang Y Z, Qin M C, Li J, Tian S X, Yang W T, Lu X H, Wu G, Chen H Z 2019 Adv. Funct. Mater. 29 1807024Google Scholar

    [55]

    Tong J H, Song Z N, Kim D H, Chen X H, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G, Liu J, Zhang F, Harvey S P, Li Z, Christensen S T, Teeter G, Zhao D W, Jassim M M A, Hest M F A M, Beard M C, Shaheen S E, Berry J J, Yan Y F, Zhu K 2019 Science 364 475Google Scholar

    [56]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [57]

    Konstantakou M, Stergiopoulos T 2017 J. Mater. Chem. A 5 11518Google Scholar

    [58]

    Ke W J, Stoumpos C C, Kanatzidis M G 2018 Adv. Mater. 31 1803230Google Scholar

    [59]

    Zhu L Z, Yuh B, Schoen S, Li X P, Aldighaithir M, Richardson B J, Alamera A, Yu Q M 2016 Nanoscale 8 7621Google Scholar

    [60]

    Liu M Y, Chen Z M, Xue Q F, Cheung S H, So S K, Yip H L, Cao Y 2018 J. Mater. Chem. A 6 16347Google Scholar

    [61]

    Nejand B A, Hossain I M, Jakoby M, Moghadamzadeh S, Abzieher T, Gharibzadeh S, Schwenzer J A, Nazari P, Schackmar F, Hauschild D, Weinhardt L, Lemmer U, Richards B S, Howard I A, Paetzold U W 2019 Adv. Energy Mater. 10 1902580Google Scholar

    [62]

    Ball J M, Buizza L, Sansom H C, Farrar M D, Klug M T, Borchert J, Patel J, Herz L M, Johnston M B, Snaith H J 2019 ACS Energy Lett. 4 2748Google Scholar

    [63]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934Google Scholar

    [64]

    Liu C, Fan J D, Li H L, Zhang C L, Mai Y H 2016 Sci. Rep. 6 35705Google Scholar

    [65]

    Liu C, Li W Z, Li H L, Zhang C L, Fan J D, Mai Y H 2017 Nanoscale 9 13967Google Scholar

    [66]

    Zhou X Y, Zhang L Z, Wang X Z, Liu C, Chen S, Zhang M Q, Li X N, Yi W D, Xu B M 2020 Adv. Mater. 32 1908107Google Scholar

    [67]

    Hu M Y, Chen M, Guo P J, Zhou H, Deng J J, Yao Y D, Jiang Y, Gong J, Dai Z H, Zhou Y X, Qian F, Chong X Y, Feng J, Schaller R D, Zhu K, Padture N P, Zhou Y Y 2020 Nat. Commun. 11 151Google Scholar

    [68]

    Yang Z B, Yu Z H, Wei H T, Xiao X, Ni Z Y, Chen B, Deng Y H, Habisreutinger S N., Chen X H, Wang K, Zhao J J, Rudd P N, Berry J J, Beard M C, Huang J S 2019 Nat. Commun. 10 4498Google Scholar

    [69]

    Kapil G, Ripolles T S., Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami T N, Segawa H, Hayase S 2018 Nano Lett. 18 3600Google Scholar

    [70]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83Google Scholar

    [71]

    Zhou X Y, Hua M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M 2019 Nano Energy 63 103866Google Scholar

    [72]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem 130 13405Google Scholar

    [73]

    Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [74]

    Jiang T M, Chen Z, Chen X, Liu T Y, Chen X Y, Sha W E I, Zhu H M, Yang Y 2020 Sol. RRL 4 1900467Google Scholar

    [75]

    Yang Z B, Zhang X H, Yang W Y, Eperon G E, Ginger D S 2020 Chem. Mater. 32 2782Google Scholar

    [76]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem 53 12571

    [77]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [78]

    Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar

    [79]

    Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [80]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z S J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [81]

    Tang H Y, Shang Y Q, Zhou W J, Peng Z J, Ning Z J 2019 Sol. RRL 3 1800256Google Scholar

    [82]

    Xu G Y, Bi P Q, Wang S H, Xue R M, Zhang J W, Chen H Y, Chen W J, Hao X T, Li Y W, Li Y F 2018 Adv. Funct. Mater. 28 1804427Google Scholar

    [83]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [84]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

  • 图 1  提高P-I-N型锡铅钙钛矿太阳电池性能的解决策略

    Fig. 1.  Solutions to improve the performance of P-I-N type tin lead perovskite solar cells.

    图 2  钙钛矿材料的能带结构随着金属比例的变化而调整 (a) Ogomi等[5]表征CH3NH3Sn1–xPbxI3能带结构随金属比例的变化; (b) Eperon等[7]通过Tauc plot、PL及第一性原理计算FASnxPb1–xI3带隙随金属比例的变化趋势; (c) Hao等[8]通过紫外吸收光谱表征CH3NH3Sn1–xPbxI3的带隙变化

    Fig. 2.  The energy band of Sn-Pb perovskite changed with the metal ratios: (a) Ogomi et al.[5] characterized the CH3NH3Sn1–xPbxI3 energy band structure changed with the metal ratio; (b) Eperon et al.[7] used the Tauc plot, PL and first-principles calculations to obtain the variable trend of HC(NH2)2SnxPb1–xI3(FASnxPb1–xI3) band gap with metal proportions; (c) Hao et al.[8] characterized the band gap changes of CH3NH3Sn1–xPbxI3 by electronic absorption spectra.

    图 3  不同结构的Sn-Pb钙钛矿太阳电池器件效率进展图, 包括N-I-P型(绿色)和P-I-N型(红色)结构

    Fig. 3.  The efficiency progress diagram of Sn-Pb perovskite solar cells in different structures, including N-I-P (green) and P-I-N (red) structures.

    图 4  (a)不同SnF2添加量的钙钛矿薄膜扫描电子显微镜(scanning electron microscope, SEM)扫描图[34]; (b) Zhu等[39]利用伽伐尼置换反应(GDR)制备MAPbxSn1–xI3钙钛矿溶液的照片和示意图以及薄膜老化过程机制示意图; (c)由于前驱体溶液中存在Sn4+而在Sn-Pb钙钛矿中形成锡空位的示意图[18]; (d) Wei等[42]利用PEAI实现Sn-Pb钙钛矿表面钝化或膜内钝化的处理方法示意图; (e) Ramirez等[43]引入叔丁胺离子n = 4和n = 5的Sn-Pb钙钛矿晶格示意图; (f) Li等[44]引入4-氟苯乙基碘化铵(FPEAI)使(MAPbI3)0.75(FASnI3)0.25晶粒高度垂直排列的示意图及未使用与使用(FPEAI)的器件J-V曲线

    Fig. 4.  (a) SEM images of perovskite films with different SnF2 additions[34]; (b) photos and schematic diagrams of preparing MAPbxSn1–xI3 precursor solution using GDR and the schematic diagram of film aging process[39]; (c) the schematic diagram of tin vacancies formation in Sn-Pb perovskite due to the presence of Sn4+ in the precursor solution[18]; (d) Wei et al. [42]used PEAI to achieve surface passivation or in-film passivation of Sn-Pb perovskit; (e) the schematic diagram of Sn-Pb perovskite lattice with n = 4 and n = 5 introduced by Ramirez et al.[43]; (f) Li et al.[44]introduced FPEAI to vertically arrange the (MAPbI3)0.75(FASnI3)0.25 grain height and the J-V curve of unused and used FPEAI devices.

    图 5  (a) AMX3型钙钛矿材料常用元素组分及不同组分的材料性质[45]; (b) FA+掺入对MA1–yFAyPb0.75Sn0.25I3钙钛矿器件稳定性的影响[49]; (c)由计算和实验所得的MASn1–xPbxI3带隙随x的变化[6]; (d)不同Sn-Pb比例的FA0.66MA0.34Pb1–xSnxI3钙钛矿的XRD图谱[24]; (e) Br含量分别为0, 6%和16%的Sn-Pb钙钛矿太阳电池的暗态J-V曲线[53]; (f)未掺入Cl和掺入2.5% Cl对钙钛矿薄膜的SEM扫描图[30]; (g)掺入不同比例(0, 15%, 25%, 40%)MASCN对薄膜钙钛矿薄膜的SEM顶部扫描图及横截面扫描图[54]

    Fig. 5.  (a) The commonly used element compositions and their properties of AMX3[45]; (b) FA+-doping effects to the stability of MA1–yFAyPb0.75Sn0.25I3 perovskite devices[49]; (c) the band gap variation with x changes of MASn1–xPbxI3 obtained from calculations and experiments[6]; (d) XRD patterns of FA0.66MA0.34Pb1–xSnxI3 perovskites with different Sn-Pb ratios[24]; (e) dark J-V curves of Sn-Pb perovskite solar cells with Br concentrations of 0, 6% and 16% respectively[53]; (f) SEM images of perovskite films without Cl and with 2.5% Cl[30]; (g) the top and cross-section SEM images of perovskite films mixed with 0, 15%, 25%, 40% of MASCN[54].

    图 6  (a)两步顺序沉积结合DMSO溶剂蒸气处理的方式制备MASn0.1Pb0.9I3的过程示意图[59]; (b)两步顺序沉积FA0.66MA0.34Pb0.5Sn0.5I3的过程示意及原位吸收光谱图[24]

    Fig. 6.  (a) The schematic diagram of the two-step sequential depositions combined with DMSO solvent vapor treatment method to prepare MASn0.1Pb0.9I3 perovskite films[59]; (b) the schematic diagram of the two-step sequential deposition process of FA0.66MA0.34Pb0.5Sn0.5I3 and in-situ absorption spectra[24].

    图 7  (a)真空辅助热退火结合一步溶液法制备的器件结构及原理示意图[60]; (b)使用/不使用真空辅助热退火所制备的薄膜形貌顶部SEM图[60]; (c)真空辅助生长(VAGC)方法的原理示意图及横截面SEM图像[61]; (d)双源共蒸法制备FA1–xCsxSn1–yPbyI3钙钛矿薄膜过程示意图及晶体结构示意图[62]

    Fig. 7.  (a) Device architecture and schematic diagram that combined the vacuum-assisted thermal annealing process and one-step solution method[60]; (b) the top SEM images of the film prepared with/without vacuum-assisted thermal annealing[60]; (c) the schematic diagram and cross-section SEM image of the film prepared by VAGC method[61]; (d) the schematic diagram and crystal structure of FA1–xCsxSn1–yPbyI3 perovskite films prepared by dual-source co-evaporation method[62].

    图 8  (a)不同DMSO/DMF溶剂比的Sn-Pb钙钛矿反应机理示意图[56]; (b) MAPb1–xSnxI3 (0 ≤ x ≤ 1)薄膜的形成机理以及相应的晶体结构示意图[64]; (c)在不同偏置电压下未掺杂及掺杂C60的MAPb0.75Sn0.25I3钙钛矿器件的本体复合寿命和表面复合寿命[65]

    Fig. 8.  (a) The mechanism diagram of Sn-Pb perovskite reactions with different DMSO/DMF solvent ratio[56]; (b) the formation mechanisms of MAPb1–xSnxI3 (0 ≤ x ≤ 1) film and corresponding crystal structures[64]; (c) bulk recombination life and surface recombination life of MAPb0.75Sn0.25I3 perovskite devices with or without C60-doped under different amplitude voltages[65].

    图 9  (a)含GABr的FA0.7MA0.3Pb0.7Sn0.3I3表面的电荷密度分布图(等电势为0.03 eÅ–3)以及未添加与添加12%的GABr的钙钛矿SEM扫描图[66]; (b)添加CdI2的1.22 eV窄带隙钙钛矿与1.80 eV宽带隙钙钛矿叠层太阳电池的结构示意图和SEM横截面扫描图[68]; (c) (4AMP)2+, 哌嗪离子和PEA+阳离子的结构式及用(4AMP)I2, 碘化哌嗪和PEAI表面处理的CsPb0.6Sn0.4I3钙钛矿太阳电池的J-V曲线[67]

    Fig. 9.  (a) The charge density distribution on the FA0.7MA0.3Pb0.7Sn0.3I3 surface containing GABr (the isopotential is 0.03 eÅ–3) and the SEM images of the perovskite without and with 12% GABr[66]; (b) structure diagram and cross-section SEM inage of 1.22 eV narrow-bandgap perovskite with CdI2 added and 1.80 eV wide-bandgap perovskite tandem solar cell[68]; (c) structure of(4AMP)2+, piperazine ion and PEA+ and J-V curves of CsPb0.6Sn0.4I3 perovskite solar cell that absorber film surface treated with (4AMP)I2, piperazine iodide and PEAI, respectively[67].

    图 10  (a) Kapil等[69]对比传统无PCBM层和带PCBM层的电荷提取和复合过程示意图, τr表示从FAMA到C60的载流子注入时间; (b)添加DF-C60形成的梯度异质结(GHJ)结构示意图[72]; (c)在NiOx及PEDOT:PSS上沉积钙钛矿膜的SEM顶部扫描图及截面扫描图[27]; (d)使用BHJ PBDB-T:ITIC中间层形成的逐步升高的HOMO能级结构示意图[82]; (e) S-乙酰硫代胆碱氯化物分子锚定在缺陷部位的示意图, 其中红色、黄色和蓝色符号分别代表S-乙酰硫代胆碱氯化物分子中的O原子、S原子和N原子[71]

    Fig. 10.  (a) The diagram of Kapil et al[69]. compared the traditional charge extraction and recombination process without and with PCBM, τr represents the carrier injection time from FAMA to C60; (b) the schematic diagram of the gradient heterojunction (GHJ) with DF-C60[72]; (c) the top and cross-section SEM images of the perovskite films deposited on NiOx and PEDOT:PSS[27]; (d) the schematic diagram of the gradually increasing HOMO energy level structure formed by BHJ PBDB-T:ITIC intermediate layer[82]; (e) the schematic diagram of the S-acetylthiocholine chloride molecule anchored at the defect sites, where the red, yellow and blue symbols represent the O atom, S atom and N atom in the acetylthiocholine chloride molecule, respectively[71].

    表 A1  P-I-N型Sn-Pb钙钛矿太阳电池性能统计

    Table A1.  Statistics of P-I-N type tin-lead perovskite solar cells performance

    YearPerovskiteDevice structureEg/eVVOC/VJSC/(mA·cm–2)FF/%PCE/(%)Ref.
    2016MA0.5FA0.5Pb0.75Sn0.25I3ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag1.330.7823.037914.19[49]
    2016(FASnI3)0.6(MAPbI3)0.4ITO/PEDOT:PSS/PVK/C60/BCP/Ag1.250.79526.8670.615.08[26]
    2017MA0.5FA0.5Pb0.5Sn0.5I3ITO/PEDOT:PSS/PVK/PCBM/Bis-C60/Ag1.20.7825.697014.01[38]
    2017MAPb0.5Sn0.5I3ITO/PEDOT:PSS/PVK-DF-C60/ICBA/Bis-C60/Ag1.220.8726.16915.61[72]
    2018(t-BUA)2(FA0.85Cs0.15)n–1 Pb0.6Sn0.4)nI3n+1ITO/PEDOT:PSS/2 D-PVK/PCBM/BCP/Ag1.240.7024.26310.6[43]
    2018FA0.6MA0.4Sn0.6Pb0.4I3ITO/PFI-(PEDOT:PSS)/PVK/PCBM/BCP/Ag1.220.78427.2274.3615.85[81]
    2018(FAPbI3)0.7(CsSnI3)0.3ITO/PEDOT:PSS/PVK/C60/BCP/Al1.30.7425.8981.415.6[36]
    2018(FASnI3)0.6(MAPbI3)0.34(MAPbBr3)0.06ITO/PEDOT:PSS/PVK/C60/BCP/Ag1.2720.88828.7274.619.03[53]
    2018(FASnI3)0.6(MAPbI3)0.4ITO/PEDOT:PSS/PVK/C60/BCP/Ag1.250.84129.074.418.1[30]
    2018FAPb0.7Sn0.3I3ITO/PEDOT:PSS/PVK/PEAI/PC61BM/BCP/Ag1.340.7826.467916.26[54]
    2018FAPb0.75Sn0.25I3ITO/NiOX/PVK/PC60BM/BCP/Ag1.360.8128.2375.417.25[27]
    2018(FASnI3)0.6(MAPbI3)0.4ITO/PEDOT:PSS/PBDBT:ITIC/PVK/C60/BCP/Ag1.250.8627.9275.118.03[82]
    2019FA0.8MA0.2Sn0.5Pb0.5I3ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag1.270.81307518.2[61]
    2019(FAPb0.6Sn0.4I3)0.85(MAPb0.6Sn0.4Br3)0.15ITO/PEDOT:PSS/PVK/PCBM/Bis­C60/Ag1.280.8726.4579.118.21[39]
    2019FA0.7MA0.3Pb0.5Sn0.5I3ITO/PEDOT:PSS/PVK/PC60BM/BCP/Cu1.220.83131.480.821.1[18]
    2019Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3ITO/NiOX/PVK/C60/BCP/Cu1.20.77131.173.317.6[52]
    2019FA0.75Cs0.25Sn0.4Pb0.6I3ITO/PVK/C60/BCP/Ag1.250.7232.5969.816.4[51]
    2019(FASnI3)0.6(MAPbI3)0.4ITO/PEDOT:PSS/PVK/C60/BCP/Ag1.250.83430.480.820.5[55]
    2019Cs0.1MA0.2FA0.7Sn0.5Pb0.5I3ITO/NiOX/PVK/C60/BCP/Cu1.20.77131.173.317.6[52]
    2020(MAPbI3)0.75(FASnI3)0.25ITO/PEDOT:PSS/PVK/BCP/Ag1.330.7928.427817.51[44]
    2020Cs0.1MA0.2FA0.7Pb0.5Sn0.5I3ITO/PEDOT:PSS/PVK/PCBM/PEIE/Ag1.250.8130.378.919.4[42]
    2020FA0.83Cs0.17Pb0.7Sn0.3I3ITO/PEDOT:PSS/PVK/PCBM/BCP/Ag1.30.8230.378.418.1[9]
    2020FA0.7MA0.3Pb0.7Sn0.3I3ITO/PEDOT:PSS(EMIC)/PVK/S-acetylthiocholine chlorde/C60/BCP/Ag1.351.0226.617620.63[66]
    2020FA0.66MA0.34Pb0.5Sn0.5I3ITO/PEDOT:PSS/PVK/C60/BCP/Ag1.230.7827.87315.8[54]
    2020FA0.5MA0.45Cs0.05Pb0.5Sn0.5I3ITO/PEDOT:PSS/PTAA/Cd-PVK/C60/BCP/Cu1.220.8530.27920.3[68]
    2020FA0.7MA0.3Pb0.5Sn0.5I3ITO/PEDOT:PSS/PVK/C60/BCP/Cu1.240.8531.680.821.7[4]
    下载: 导出CSV
  • [1]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Best research-cell efficiencies https://www.nrel.gov/pv/cell-efficiency.html.

    [3]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [4]

    Xiao K, Lin R X, Han Q L, Hou Y, Qin Z Y, Nguyen H T, Wen J, Wei M Y, Yeddu V, Saidaminov M I, Gao Y, Luo X, Wang Y R, Gao H, Zhang C F, Xu J, Zhu J, Sargent E H, Tan H R 2020 Nat. Energy 5 870Google Scholar

    [5]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T L, Hayase S 2014 J. Phys. Chem. Lett. 5 1004Google Scholar

    [6]

    Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G 2015 J. Phys. Chem. Lett. 6 3503Google Scholar

    [7]

    Eperon G E, Leijtens T, Bush K A, et al. 2016 Science 354 86Google Scholar

    [8]

    Hao F, Stoumpos C C, Chang R P H, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [9]

    Klug M T, Milot R L, Patel J B, Green T, Sansom H C, Farrar M D, Ramadan A J, Martani S, Wang Z P, Wenger B, Ball J M, Langshaw L, Petrozza A, Johnston M B, Herz L M, Snaith H J 2020 Energy Environ. Sci. 14 112

    [10]

    Gu S, Lin R X, Han Q L, Gao Y, Tan H R, Zhu J 2020 Adv. Mater. 32 1907392

    [11]

    Yao H H, Zhou F G, Li Z Z, Ci Z P, Ding L M, Jin Z W 2020 Adv. Sci. 7 1903540Google Scholar

    [12]

    Zhu Z L, Chueh C C, Li N, Mao C Y, Jen A K Y 2018 Adv. Mater. 30 1703800Google Scholar

    [13]

    Li J M, Cao H L, Jiao W B, Wang Q, Wei M D, Cantone I, Lü J, Abate A 2020 Nat. Commun. 11 310Google Scholar

    [14]

    Tchounwou P B, Yedjou C G, Patlolla A K, Sutton D J 2012 Molecular, Clinical and Environmental Toxicology (Vol. 101) (Jackson: Springer, Basel.) p133

    [15]

    Nishimura K, Kamarudin M A, Hirotani D, Hamada K, Shen Q, Iikubo S, Minemoto T, Yoshino K, Hayase S 2020 Nano Energy 74 104858Google Scholar

    [16]

    Leijtens T, Prasanna R, Parker A G, Toney M F, McGehee M D 2017 ACS Energy Lett. 2 2159Google Scholar

    [17]

    Yan Y J, Pullerits T, Zheng K B, Liang Z Q 2020 ACS Energy Lett. 5 2052Google Scholar

    [18]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [19]

    Ricciarelli D, Meggiolaro D, Ambrosio F, Angelis F D 2020 ACS Energy Lett. 5 2787Google Scholar

    [20]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [21]

    Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G 2016 J. Am. Chem. Soc 138 14750Google Scholar

    [22]

    Yang Z B, Rajagopal A, Jen A K Y 2017 Adv. Mater. 29 1704418Google Scholar

    [23]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herza L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar

    [24]

    Wang J K, Datta K, Li J Y, Verheijen M A, Zhang D, Wienk M M, Janssen R A J 2020 Adv. Energy Mater. 10 2000566Google Scholar

    [25]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P H, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [26]

    Liao W Q, Zhao D W, Yu Y, Shrestha N, Ghimire K, Grice C R, Wang C L, Xiao Y Q, Cimaroli A J, Ellingson R J, Podraza N J, Zhu K, Xiong R G, Yan Y F 2016 J. Am. Chem. Soc. 138 12360Google Scholar

    [27]

    Chi D, Huang S H, Zhang M Y, Mu S Q, Zhao Y, Chen Y, You J B 2018 Adv. Funct. Mater. 28 1804603Google Scholar

    [28]

    Wang C L, Song Z N, Li C W, Zhao D W, Yan Y F 2019 Adv. Funct. Mater. 29 1808801Google Scholar

    [29]

    Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z Y 2018 Adv. Mater. 30 1705998Google Scholar

    [30]

    Zhao D W, Chen C, Wang C L, Junda M M, Song Z N, Grice C R, Yu Y, Li C W, Subedi B, Podraza N J, Zhao X Z, Fang G J, Xiong R G, Zhu K, Yan Y F 2018 Nat. Energy 3 1093Google Scholar

    [31]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [32]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [33]

    Gupta S, Cahen D, Hodes G 2018 J. Phys. Chem. C 122 13926Google Scholar

    [34]

    Liao W Q, Zhao D W, Yu Y, Grice C R, Wang C L, Cimaroli A J, Schulz P, Meng W W, Zhu K, Xiong R G, Yan Y F 2016 Adv. Mater. 28 9333Google Scholar

    [35]

    Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, and Seok S I 2016 J. Am. Chem. Soc. 138 3974Google Scholar

    [36]

    Zong Y X, Zhou Z M, Chen M, Padture N P. Zhou Y Y 2018 Adv. Energy Mater. 8 1800997Google Scholar

    [37]

    Chung I, Lee B, He J Q, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar

    [38]

    Xu X B, Chueh C C, Yang Z B, Rajagopal A, Xu J Q, Jo S B, Jen A K Y 2017 Nano Energy 34 392Google Scholar

    [39]

    Zhu Z L, Li N, Zhao D B, Wang L D, Jen A K Y 2019 Adv. Energy Mater. 9 1802774Google Scholar

    [40]

    Saidaminov M I, Spanopoulos I, Abed J, Ke W J, Wicks J, Kanatzidis M G, and Sargent E H 2020 ACS Energy Lett. 5 1153Google Scholar

    [41]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [42]

    Wei M Y, Xiao K, Walters G, Lin R X, Zhao Y B, Saidaminov M I, Todorović P, Johnston A, Huang Z R, Chen H J, Li A D, Zhu J, Yang Z Y, Wang Y K, Proppe A H, Kelley S O, Hou Y, Voznyy O, Tan H R, Sargent E H 2020 Adv. Mater. 32 1907058Google Scholar

    [43]

    Ramirez D, Schutt K, Wang Z P, Pearson A J, Ruggeri E, Snaith H J, Stranks S D, Jaramillo F 2018 ACS Energy Lett. 3 2246Google Scholar

    [44]

    Li C H, Pan Y M, Hu J L, Qiu S D, Zhang C L, Yang Y Z, Chen S, Liu X H, Brabec C J, Nazeeruddin M K, Mai Y H, Guo F 2020 ACS Energy Lett. 5 1386Google Scholar

    [45]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [46]

    Green M A, Baillie A H, Snaith H J 2014 Nat. Photon. 8 506Google Scholar

    [47]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv. 5 eaav0693Google Scholar

    [48]

    Shi T T, Zhang H S, Meng W W, Teng Q, Liu M Y, Yang X B, Yan Y F, Yip H L, Zhao Y J 2017 J. Mater. Chem. A 5 15124Google Scholar

    [49]

    Yang Z B, Rajagopal A, Chueh C C, Jo S B, Liu B, Zhao T, Jen A K Y 2016 Adv. Mater. 28 8990Google Scholar

    [50]

    Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar

    [51]

    Prasanna R, Leijtens T, Dunfield S P, Raiford J A, Wolf E J, Swifter S A, Werner J, Eperon G E, Paula C d, Palmstrom A F, Boyd C C, Hest M F A M, Bent S F, Teeter G, Berry J J, McGehee M D 2019 Nat. Energy 4 939Google Scholar

    [52]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [53]

    Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2018 Adv. Energy Mater. 9 1803135

    [54]

    Lian X M, Chen J H, Zhang Y Z, Qin M C, Li J, Tian S X, Yang W T, Lu X H, Wu G, Chen H Z 2019 Adv. Funct. Mater. 29 1807024Google Scholar

    [55]

    Tong J H, Song Z N, Kim D H, Chen X H, Chen C, Palmstrom A F, Ndione P F, Reese M O, Dunfield S P, Reid O G, Liu J, Zhang F, Harvey S P, Li Z, Christensen S T, Teeter G, Zhao D W, Jassim M M A, Hest M F A M, Beard M C, Shaheen S E, Berry J J, Yan Y F, Zhu K 2019 Science 364 475Google Scholar

    [56]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [57]

    Konstantakou M, Stergiopoulos T 2017 J. Mater. Chem. A 5 11518Google Scholar

    [58]

    Ke W J, Stoumpos C C, Kanatzidis M G 2018 Adv. Mater. 31 1803230Google Scholar

    [59]

    Zhu L Z, Yuh B, Schoen S, Li X P, Aldighaithir M, Richardson B J, Alamera A, Yu Q M 2016 Nanoscale 8 7621Google Scholar

    [60]

    Liu M Y, Chen Z M, Xue Q F, Cheung S H, So S K, Yip H L, Cao Y 2018 J. Mater. Chem. A 6 16347Google Scholar

    [61]

    Nejand B A, Hossain I M, Jakoby M, Moghadamzadeh S, Abzieher T, Gharibzadeh S, Schwenzer J A, Nazari P, Schackmar F, Hauschild D, Weinhardt L, Lemmer U, Richards B S, Howard I A, Paetzold U W 2019 Adv. Energy Mater. 10 1902580Google Scholar

    [62]

    Ball J M, Buizza L, Sansom H C, Farrar M D, Klug M T, Borchert J, Patel J, Herz L M, Johnston M B, Snaith H J 2019 ACS Energy Lett. 4 2748Google Scholar

    [63]

    Wu Y Z, Islam A, Yang X D, Qin C J, Liu J, Zhang K, Peng W Q, Han L Y 2014 Energy Environ. Sci. 7 2934Google Scholar

    [64]

    Liu C, Fan J D, Li H L, Zhang C L, Mai Y H 2016 Sci. Rep. 6 35705Google Scholar

    [65]

    Liu C, Li W Z, Li H L, Zhang C L, Fan J D, Mai Y H 2017 Nanoscale 9 13967Google Scholar

    [66]

    Zhou X Y, Zhang L Z, Wang X Z, Liu C, Chen S, Zhang M Q, Li X N, Yi W D, Xu B M 2020 Adv. Mater. 32 1908107Google Scholar

    [67]

    Hu M Y, Chen M, Guo P J, Zhou H, Deng J J, Yao Y D, Jiang Y, Gong J, Dai Z H, Zhou Y X, Qian F, Chong X Y, Feng J, Schaller R D, Zhu K, Padture N P, Zhou Y Y 2020 Nat. Commun. 11 151Google Scholar

    [68]

    Yang Z B, Yu Z H, Wei H T, Xiao X, Ni Z Y, Chen B, Deng Y H, Habisreutinger S N., Chen X H, Wang K, Zhao J J, Rudd P N, Berry J J, Beard M C, Huang J S 2019 Nat. Commun. 10 4498Google Scholar

    [69]

    Kapil G, Ripolles T S., Hamada K, Ogomi Y, Bessho T, Kinoshita T, Chantana J, Yoshino K, Shen Q, Toyoda T, Minemoto T, Murakami T N, Segawa H, Hayase S 2018 Nano Lett. 18 3600Google Scholar

    [70]

    Minemoto T, Matsui T, Takakura H, Hamakawa Y, Negami T, Hashimoto Y, Uenoyama T, Kitagawa M 2001 Sol. Energy Mater. Sol. Cells 67 83Google Scholar

    [71]

    Zhou X Y, Hua M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M 2019 Nano Energy 63 103866Google Scholar

    [72]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem 130 13405Google Scholar

    [73]

    Li C W, Song Z N, Zhao D W, Xiao C X, Subedi B, Shrestha N, Junda M M, Wang C L, Jiang C S, Jassim M A, Ellingson R J, Podraza N J, Zhu K, Yan Y F 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [74]

    Jiang T M, Chen Z, Chen X, Liu T Y, Chen X Y, Sha W E I, Zhu H M, Yang Y 2020 Sol. RRL 4 1900467Google Scholar

    [75]

    Yang Z B, Zhang X H, Yang W Y, Eperon G E, Ginger D S 2020 Chem. Mater. 32 2782Google Scholar

    [76]

    Zhu Z L, Bai Y, Zhang T, Liu Z K, Long X, Wei Z H, Wang Z L, Zhang L X, Wang J N, Yan F, Yang S H 2014 Angew. Chem 53 12571

    [77]

    Jeng J Y, Chen K C, Chiang T Y, Lin P Y, Tsai T D, Chang Y C, Guo T F, Chen P, Wen T C, Hsu Y J 2014 Adv. Mater. 26 4107Google Scholar

    [78]

    Garcia A, Welch G C, Ratcliff E L, Ginley D S, Bazan G C, Olson D C 2012 Adv. Mater. 24 5368Google Scholar

    [79]

    Manders J R, Tsang S W, Hartel M J, Lai T H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [80]

    Yu Z H, Yang Z B, Ni Z Y, Shao Y C, Chen B, Lin Y Z, Wei H T, Yu Z S J, Holman Z, Huang J S 2020 Nat. Energy 5 657Google Scholar

    [81]

    Tang H Y, Shang Y Q, Zhou W J, Peng Z J, Ning Z J 2019 Sol. RRL 3 1800256Google Scholar

    [82]

    Xu G Y, Bi P Q, Wang S H, Xue R M, Zhang J W, Chen H Y, Chen W J, Hao X T, Li Y W, Li Y F 2018 Adv. Funct. Mater. 28 1804427Google Scholar

    [83]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [84]

    Chen Y H, Li N X, Wang L G, Li L, Xu Z Q, Jiao H Y, Liu P F, Zhu C, Zai H C, Sun M Z, Zou W, Zhang S, Xing G C, Liu X F, Wang J P, Li D D, Huang B L, Chen Q, Zhou H P 2019 Nat. Commun. 10 1112Google Scholar

  • [1] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能. 物理学报, 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [2] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [3] 孙雪, 黄锋, 刘桂雄, 苏子生. 纳米成核点辅助结晶对钙钛矿光电探测器性能的影响. 物理学报, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [4] 梁琦, 杨孟骐, 张京阳, 王如志. PECVD法制备高结晶GaN薄膜及其光电响应性能. 物理学报, 2022, 71(9): 097302. doi: 10.7498/aps.71.20211922
    [5] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [6] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [7] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [8] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [9] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [10] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱. 物理学报, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [11] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
    [12] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [13] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [14] 胡美娇, 李成, 徐剑芳, 赖虹凯, 陈松岩. 循环氧化/退火制备GeOI薄膜材料及其性质研究. 物理学报, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [15] 向 军, 王晓晖. Sm0.9Sr0.1AlO3-δ钙钛矿氧化物的固相反应合成和电学性能. 物理学报, 2008, 57(7): 4417-4423. doi: 10.7498/aps.57.4417
    [16] 谢自力, 张 荣, 修向前, 刘 斌, 朱顺明, 赵 红, 濮 林, 韩 平, 江若琏, 施 毅, 郑有炓. InN薄膜的氧化特性研究. 物理学报, 2007, 56(2): 1032-1035. doi: 10.7498/aps.56.1032
    [17] 李 雅, 陈玲燕, 张 哲, 吴永刚, 乔 轶, 徐炜新. XPS研究Nd表面氧化物的生长过程. 物理学报, 2001, 50(1): 79-82. doi: 10.7498/aps.50.79
    [18] 姜 勇, 李 广, 曾祥勇, 杨应平, 袁松柳, 金嗣昭. 钙钛矿Mn基氧化物的电子顺磁共振行为的实验研究. 物理学报, 2000, 49(9): 1846-1851. doi: 10.7498/aps.49.1846
    [19] 杨广亮, 鲜于文旭, 千正男, 金汉民. 纳米晶类钙钛矿型锰氧化物导电性的高压研究. 物理学报, 2000, 49(3): 553-556. doi: 10.7498/aps.49.553
    [20] 连贵君, 李美亚, 康晋峰, 郭建东, 孙云峰, 熊光成. 钙钛矿结构氧化物薄膜 的外延生长. 物理学报, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
计量
  • 文章访问数:  12163
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 修回日期:  2020-12-23
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

/

返回文章
返回