搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面相控阵超大角度扫描的阵因子分析

胡昌海 王任 陈传升 王秉中

引用本文:
Citation:

平面相控阵超大角度扫描的阵因子分析

胡昌海, 王任, 陈传升, 王秉中

Array factor analysis for untra-wide-angle scanning performance of planar phased arrays

Hu Chang-Hai, Wang Ren, Chen Chuan-Sheng, Wang Bing-Zhong
PDF
HTML
导出引用
  • 目前学者们普遍认为, 平面相控阵的方向性系数在扫描过程中按照余弦规律变化, 无法实现从侧射到端射的大角度范围波束扫描. 为了明晰面阵扫描方向图的变化规律, 本文从阵因子的严格公式出发, 分析了不同规模平面相控阵的方向性系数随扫描角度的变化, 并将由严格阵因子公式得到的方向性系数变化趋势与余弦规律进行了比较. 分析表明, 有限大面阵的方向性系数在近端射区域不满足余弦变化规律, 且在端射区域不为零. 基于上述结论, 本文进一步提出了采用单元方向图赋形弥补阵因子方向性系数变化的思路, 为平面相控阵实现超大角度范围波束扫描指明了方向.
    At present, researchers generally believe that the change of maximum directivity of planar phased arrays in beam scanning process conforms with the cosine law, so that the wide-range beam scanning from broadside to end-fire is impossible to realize. There are three main factors that affect the scanning range of the planar phased array antenna: 1) array factor; 2) element pattern; 3) port impedance matching. Scholars have done a lot of researches on the element pattern and the port impedance matching. About the array factor, Elliott, a famous phased array scholar, made a theoretical study on the directivity of the linear array and the planar array in 1963 and 1964, concluding that the variation of directivity of planar phased array conforms with the cosine law. However, the above conclusion came from an approximate formula under certain conditions: 1) the element pattern in the half-space is omnidirectional; 2) the beam of a large array is narrow enough; 3) the beam cannot scan a range of several beamwidths close to end-fire. To make clear the scanning beam’s change law of planar arrays, the law of directivity changing with scanning angle of linear array and planar phased array with different sizes are analyzed by using the strict formula of array factor, and the directivity’s change law derived from strict formula of array factor is compared with the cosine law. The results show that 1) the variation law of the directivity of a linear array depends on the spacing between elements. When the spacing between elements is equal to half a wavelength, the directivity of the array does not change with the scanning angle. When the spacing between elements is less than half a wavelength, the directivity of the array increases with scanning angle increasing. 2) The directivity of a finite array decreases with scanning angle increasing. However, the scanning beam’s maximum directivity of a finite planar phased array does not satisfy the cosine law and it is not zero in the end-fire range. Based on the above conclusions, the idea that the change of array factor’s directivity is compensated for by element beamforming is further proposed, which points out a direction for realizing the ultra-wide-angle-range beam scanning of planar phased arrays.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901086)、博士后创新人才支持计划(批准号: BX20180057)、中国博士后科学基金(批准号: 2018M640907)和中央高校基本科研业务费专项资金(批准号: ZYGX2019J101, ZYGX2019Z016)资助的课题
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901086), the Postdoctoral Innovation Talents Support Program of China (Grant No. BX20180057), the China Postdoctoral Science Foundation (Grant No. 2018M640907), and the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2019J101, ZYGX2019Z016)
    [1]

    Kmetzo J 1967 IEEE Trans. Antennas Propag. 15 367Google Scholar

    [2]

    Valavan S E, Tran D, Yarovoy A G, Roederer A G 2014 IEEE Trans. Antennas Propag. 62 5370Google Scholar

    [3]

    Toshev A G 2008 IEEE Trans. Antennas Propag. 56 3330Google Scholar

    [4]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F, Wang B Z 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [5]

    杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐 2021 物理学报 70 014101Google Scholar

    Yang H N, Cao X Y, Gao J, Yang H H, Li T 2021 Acta Phys. Sin. 70 014101Google Scholar

    [6]

    郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 物理学报 63 224102Google Scholar

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin 63 224102Google Scholar

    [7]

    Zhang Y, Liu H, Meng C 2020 Prog. Electromagn. Res. 168 31Google Scholar

    [8]

    Ouedraogo S, Hinostroza Saenz I D, Guinvarc'h R 2019 Prog. Electromagn. Res. 164 17Google Scholar

    [9]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [10]

    Cheng Y F, Ding X, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 932Google Scholar

    [11]

    Wang R, Wang B Z, Ding X, Yang X S 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [12]

    Wang R, Wang B Z, Hu C H, Gong C, Ding X 2016 Prog. Electromag. Res. 156 13Google Scholar

    [13]

    Wen Y, Wang B Z, Ding X 2016 IEEE Trans. Antennas Propag. 64 805Google Scholar

    [14]

    Wang R, Wang B Z, Hu C H, Ding X 2017 Sci. Rep. 7 2729Google Scholar

    [15]

    Xia R L, Qu S W, Li P F, Yang D Q, Yang S W, Nie Z P 2015 IEEE Trans. Antennas. Propag. 63 5161Google Scholar

    [16]

    Abbasi Arand B, Bazrkar A, Zahedi A 2017 IEEE Trans. Antennas. Propag. 65 2983Google Scholar

    [17]

    Oliveri G, Viani F, Anselmi N, Massa A 2015 IEEE Trans. Antennas. Propag. 63 2482Google Scholar

    [18]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas. Propag. 68 2788Google Scholar

    [19]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas. Propag. 64 4256Google Scholar

    [20]

    Elliott R S 1963 Beamwidth and Directivity of Large Scanning Arrays: Part I [J] Microwave J. Vol. 6 pp53–60

    [21]

    Elliott R S 1964 Beamwidth and Directivity of Large Scanning Arrays: Part II [J] Microwave J. Vol. 7 pp74–82

    [22]

    Jiang Z, Xiao S, Yao Z, Wang B Z 2020 IEEE Trans. Antennas. Propag. 68 7348Google Scholar

    [23]

    Keda U V 2020 IEEE 12th International Conference on Antenna Theory and Techniques (ICATT) Macau, China, November 23–25, 2020 p76

  • 图 1  N元直线阵示意图

    Fig. 1.  An N-elements linear array.

    图 2  一维阵因子在不同阵元间距扫描时的归一化方向性系数随扫描角度的变化 (a) 一维阵列尺寸为8λ; (b) 一维阵列尺寸为16λ; (c) 一维阵列尺寸为32λ; (d) 一维阵列尺寸为64λ

    Fig. 2.  Normalized directivity of the linear array factor varies with different element spaces and different scanning angles: (a) The size of the linear array factor is 8λ; (b) the size of the linear array factor is 16λ; (c) the size of the linear array factor is 32λ; (d) the size of the linear array factor is 64λ.

    图 3  平面阵列示意图

    Fig. 3.  A planar array.

    图 4  平面阵阵因子归一化最大方向性系数随扫描角度的变化情况(φ = 0°) (a) 8λ × 8λ阵列; (b) 16λ × 16λ阵列; (c) 32λ × 32λ阵列; (d) 64λ × 64λ阵列; (e) 128λ × 128λ阵列; (f) 256λ × 256λ阵列

    Fig. 4.  Normalized directivity of the planar array factor varies with different element spaces and different scanning angles (φ = 0°): (a) The size of the planar array factor is 8λ × 8λ; (b) the size of the planar array factor is 16λ × 16λ; (c) the size of the planar array factor is 32λ × 32λ; (d) the size of the planar array factor is 64λ × 64λ; (e) the size of the planar array factor is 128λ × 128λ; (f) the size of the planar array factor is 256λ × 256λ.

    图 5  平面阵阵因子归一化最大方向性系数在不同单元间距和不同φ值时随扫描角度的变化情况 (a) 16λ × 16λ阵列(d = 0.5λ); (b) 32λ × 32λ阵列(d = 0.5λ); (c) 16λ × 16λ阵列(d = 0.4λ); (d) 32λ × 32λ阵列(d = 0.4λ)

    Fig. 5.  Normalized directivity of the planar array factor varies with different element spaces, different scanning angles, and different φ: (a) The size of the planar array factor is 16λ × 16λ (d = 0.5λ); (b) the size of the planar array factor is 32λ × 32λ (d = 0.5λ); (c) the size of the planar array factor is 16λ × 16λ (d = 0.4λ); (d) the size of the planar array factor is 32λ × 32λ (d = 0.4λ).

  • [1]

    Kmetzo J 1967 IEEE Trans. Antennas Propag. 15 367Google Scholar

    [2]

    Valavan S E, Tran D, Yarovoy A G, Roederer A G 2014 IEEE Trans. Antennas Propag. 62 5370Google Scholar

    [3]

    Toshev A G 2008 IEEE Trans. Antennas Propag. 56 3330Google Scholar

    [4]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F, Wang B Z 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [5]

    杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐 2021 物理学报 70 014101Google Scholar

    Yang H N, Cao X Y, Gao J, Yang H H, Li T 2021 Acta Phys. Sin. 70 014101Google Scholar

    [6]

    郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 物理学报 63 224102Google Scholar

    Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin 63 224102Google Scholar

    [7]

    Zhang Y, Liu H, Meng C 2020 Prog. Electromagn. Res. 168 31Google Scholar

    [8]

    Ouedraogo S, Hinostroza Saenz I D, Guinvarc'h R 2019 Prog. Electromagn. Res. 164 17Google Scholar

    [9]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [10]

    Cheng Y F, Ding X, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 932Google Scholar

    [11]

    Wang R, Wang B Z, Ding X, Yang X S 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [12]

    Wang R, Wang B Z, Hu C H, Gong C, Ding X 2016 Prog. Electromag. Res. 156 13Google Scholar

    [13]

    Wen Y, Wang B Z, Ding X 2016 IEEE Trans. Antennas Propag. 64 805Google Scholar

    [14]

    Wang R, Wang B Z, Hu C H, Ding X 2017 Sci. Rep. 7 2729Google Scholar

    [15]

    Xia R L, Qu S W, Li P F, Yang D Q, Yang S W, Nie Z P 2015 IEEE Trans. Antennas. Propag. 63 5161Google Scholar

    [16]

    Abbasi Arand B, Bazrkar A, Zahedi A 2017 IEEE Trans. Antennas. Propag. 65 2983Google Scholar

    [17]

    Oliveri G, Viani F, Anselmi N, Massa A 2015 IEEE Trans. Antennas. Propag. 63 2482Google Scholar

    [18]

    Hu C H, Wang B Z, Wang R, Xiao S Q, Ding X 2020 IEEE Trans. Antennas. Propag. 68 2788Google Scholar

    [19]

    Yetisir E, Ghalichechian N, Volakis J L 2016 IEEE Trans. Antennas. Propag. 64 4256Google Scholar

    [20]

    Elliott R S 1963 Beamwidth and Directivity of Large Scanning Arrays: Part I [J] Microwave J. Vol. 6 pp53–60

    [21]

    Elliott R S 1964 Beamwidth and Directivity of Large Scanning Arrays: Part II [J] Microwave J. Vol. 7 pp74–82

    [22]

    Jiang Z, Xiao S, Yao Z, Wang B Z 2020 IEEE Trans. Antennas. Propag. 68 7348Google Scholar

    [23]

    Keda U V 2020 IEEE 12th International Conference on Antenna Theory and Techniques (ICATT) Macau, China, November 23–25, 2020 p76

  • [1] 杨卫涛, 武艺琛, 许睿明, 时光, 宁提, 王斌, 刘欢, 郭仲杰, 喻松林, 吴龙胜. 碲镉汞红外焦平面阵列图像传感器空间质子位移损伤及电离总剂量效应Geant4仿真. 物理学报, 2024, 73(23): 232402. doi: 10.7498/aps.73.20241246
    [2] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 物理学报, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [3] 王身云, 张康旭, 王峰, 文舸一. 一款360°连续扫描圆形阵列天线设计. 物理学报, 2022, 71(24): 248402. doi: 10.7498/aps.71.20221503
    [4] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴. 基于移动渐近线算法的大角度偏转分束器的智能设计. 物理学报, 2021, 70(23): 234102. doi: 10.7498/aps.70.20210117
    [5] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [6] 张玉燕, 殷东哲, 温银堂, 罗小元. 基于自适应Kalman滤波的平面阵列电容成像. 物理学报, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [7] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器. 物理学报, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [8] 冯加林, 施宏宇, 王远, 张安学, 徐卓. 基于场变换理论的大角度涡旋电磁波生成方法. 物理学报, 2020, 69(13): 135201. doi: 10.7498/aps.69.20200365
    [9] 白俊雪, 郭伟玲, 孙捷, 樊星, 韩禹, 孙晓, 徐儒, 雷珺. GaN基高压发光二极管理想因子与单元个数关系研究. 物理学报, 2015, 64(1): 017303. doi: 10.7498/aps.64.017303
    [10] 张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究. 物理学报, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [11] 刘俊群. 斜置平面天线阵的近场-远场方向图分析. 物理学报, 2012, 61(23): 238401. doi: 10.7498/aps.61.238401
    [12] 蒋双凤, 孔凡敏, 李康, 高晖. 光偶极天线的远场方向性研究. 物理学报, 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
    [13] 蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平. 基于无基底焦平面阵列红外热像仪的理论模型分析. 物理学报, 2011, 60(5): 054401. doi: 10.7498/aps.60.054401
    [14] 唐明春, 肖绍球, 高山山, 官剑, 王秉中. 新型电谐振人工异向介质抑制阵列天线单元间互耦. 物理学报, 2010, 59(3): 1851-1856. doi: 10.7498/aps.59.1851
    [15] 程腾, 张青川, 陈大鹏, 伍小平, 史海涛, 高杰. 无基底焦平面阵列的红外成像性能分析. 物理学报, 2009, 58(2): 852-859. doi: 10.7498/aps.58.852
    [16] 王 淼, 尚学府, 李振华, 王新庆, 徐亚伯. 纳米碳管阵列场增强因子的计算. 物理学报, 2006, 55(2): 797-802. doi: 10.7498/aps.55.797
    [17] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [18] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究. 物理学报, 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
    [19] 冯国光. 大角度会聚束电子衍射的新方法. 物理学报, 1984, 33(9): 1287-1290. doi: 10.7498/aps.33.1287
    [20] 权夕祖. 扫描球面-平面干涉仪. 物理学报, 1975, 24(5): 375-380. doi: 10.7498/aps.24.375
计量
  • 文章访问数:  9047
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-17
  • 上网日期:  2021-04-23
  • 刊出日期:  2021-05-05

/

返回文章
返回