搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方腔内电场强化固液相变传热

和琨 郭秀娅 张小盈 汪垒

引用本文:
Citation:

方腔内电场强化固液相变传热

和琨, 郭秀娅, 张小盈, 汪垒

Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure

He Kun, Guo Xiu-Ya, Zhang Xiao-Ying, Wang Lei
PDF
HTML
导出引用
  • 采用格子Boltzmann方法对方腔内介电相变材料的熔化过程进行数值模拟与分析, 系统研究了电场力和浮升力耦合作用下固液相变传热过程的流体流动、电荷输运以及传热等基本特征, 重点分析了电瑞利数T、斯蒂芬数$Ste$、离子迁移率M和普朗特数$Pr$等多个无量纲参数对固液相变传热过程的影响. 研究表明, 与浮升力驱动下的固液相变情况相比, 外加电场不仅会改变方腔内流体流动结构以及相界面的演化规律, 而且还会提高介电相变材料的熔化效率, 强化固液相变传热过程. 特别地, 上述现象会随着电瑞利数T的增大愈加明显. 此外, 引入了无量纲参数$\varPhi$, 用以表征电场强化固液相变的实际效果. 结果显示, 随着斯蒂芬数$Ste$的增加, 电场强化固液相变的实际效果会有所减弱, 但对于较大的电瑞利数而言, 改变斯蒂芬数$Ste$的实际大小并不会对电场强化固液相变的实际效果有太大影响. 最后, 发现电场强化固液相变的实际效果与离子迁移率M一般具有负相关的关系, 即随着离子迁移率M的增加, 电场强化固液相变的效果反而下降; 而受电场力和浮升力的协同影响, 普朗特数$Pr$对电场强化固液相变效果的影响则依赖于离子迁移率M.
    Melting of the dielectric phase change material inside a closed square enclosure is numerically investigated. The fully coupled equations including Navier-Stokes equations, Poisson's equation, charge conservation equation and the energy equation are solved using the lattice Boltzmann method (LBM). Strong charge injection from a high temperature vertical electrode is considered and the basic characteristics of fluid flow, charge transport and heat transfer in solid-liquid phase change process under the coupling of Coulomb force and buoyancy force are systematically studied. Emphasis is put on analysing the influence of multiple non-dimensional parameters, including electric Rayleigh number T, Stefan number $Ste$, mobility number M, and Prandtl number $Pr$ on electrohydrodynamic (EHD) solid-liquid phase change. The numerical results show that comparing with the melting process driven by buoyancy force, the applied electric field will not only change the flow structure in liquid region and the evolution of the liquid-solid interface, but also increase the heat transfer efficiency of dielectric phase change material and thus enhance the solid-liquid phase change process. In particular, we find that this phenomenon becomes more pronounced when T is larger. Further, the dimensionless parameter $\varPhi$ is introduced to characterize the effect of EHD enhanced solid-liquid phase change, and the results indicate that the effect of EHD enhancement solid-liquid phase change is weakened with the increase of Stefan number $Ste$, However the change of $Ste$ does not make much difference in EHD enhancement solid-liquid phase change for a sufficiently high electric Rayleigh number T, and it is attributed to the fully developed convection cells at a very early stage of the melting process. Moreover, it is found that the effect of EHD enhancement solid-liquid phase change is negatively related to the mobility number M and that the effect of Prandtl number $Pr$ on the EHD enhancement solid-liquid phase change largely depends on the mobility number M, which is due to the simultaneous influence of electric field force and buoyancy force. In general, the electric field has a significant influence on the melting process of dielectric phase change material, especially at high T,$Pr$ and low $Ste$, M. And quantitatively, in all tested cases, a maximum melting time saves about 86.6% at $T=1000$, $Ra=10000$, $M=3$, $Pr=20$, and $Ste=0.1$.
      通信作者: 汪垒, wangleir1989@126.com
    • 基金项目: 国家自然科学基金(批准号: 12002320)资助的课题
      Corresponding author: Wang Lei, wangleir1989@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12002320)
    [1]

    Luo X, Wang J H, Dooner M, Clarke J 2015 Appl. Energy 137 511Google Scholar

    [2]

    Chen H S, Cong T N, Yang W, Tan C Q, Li Y L, Ding Y L 2009 Prog. Nat. Sci. 19 291Google Scholar

    [3]

    霍宇涛 2018 博士学位论文 (徐州: 中国矿业大学)

    Huo Y T 2018 Ph. D. Dissertation (Xuzhou: China University of Mining and Technology) (in Chinese)

    [4]

    Ren Q L, Meng F L, Guo P H 2018 Int. J. Heat Mass Transfer 121 1214Google Scholar

    [5]

    赵耀 2018 博士学位论文 (上海: 上海交通大学)

    Zhao Y 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [6]

    Sharma A, Tyagi V V, Chen C R, Buddhi D 2009 Renewable Sustainable Energy Rev. 13 318Google Scholar

    [7]

    Agyenim F, Hewitt N, Eames P, Smyth M 2010 Renewable Sustainable Energy Rev. 14 615Google Scholar

    [8]

    Ren Q L 2019 Energy Convers. Manage. 180 784Google Scholar

    [9]

    Stritih U 2004 Int. J. Heat Mass Transfer 47 2841Google Scholar

    [10]

    Lacroix M, Benmadda M 1997 Numer. Heat Tranfer, Part A 31 71Google Scholar

    [11]

    Ji C Z, Qin Z, Low Z H, Dubey S, Choo F H, Duan F 2018 Appl. Therm. Eng. 129 269Google Scholar

    [12]

    Khodadadi J M, Hosseinizadeh S F 2007 Int. Commun. Heat Mass Transfer 34 534Google Scholar

    [13]

    Feng Y C, Li H X, Li L X, Bu L, Wang T 2015 Int. J. Heat Mass Transfer 81 415Google Scholar

    [14]

    Xiao X, Zhang P, Li M 2014 Int. J. Therm. Sci. 81 94Google Scholar

    [15]

    张涛, 余建祖 2007 制冷学报 6 13Google Scholar

    Zhang T, Yu J Z 2007 J. Refrigeration 6 13Google Scholar

    [16]

    Fan L W, Zhu Z Q, Zeng Y, Ding Q, Liu M J 2016 Int. J. Heat Mass Transfer 95 1057Google Scholar

    [17]

    Fan L W, Zhu Z Q, Liu M J, Xu C L, Zeng Y, Lu H, Tao Y Z 2016 J. Heat Transfer-Trans. ASME 138 122402Google Scholar

    [18]

    Oh Y K, Park S H, Cha K O 2001 KSME Int. J. 15 1882Google Scholar

    [19]

    Oh Y K, Park S H, Cho Y I 2002 Int. J. Heat Mass Transfer 45 4631Google Scholar

    [20]

    Nakhla D, Sadek H, Cotton J S 2015 Int. J. Heat Mass Transfer 81 695Google Scholar

    [21]

    Rashidi S, Bafekr H, Masoodi R, Languri M E 2017 J. Electrostat. 8 1Google Scholar

    [22]

    Atten P, Mc Cluskey F, Pérez A 1988 IEEE Transactions on Electrical Insulation 23 659Google Scholar

    [23]

    Traoré P, Pérez A T, Koulova D, Romat H 2010 J. Fluid Mech. 658 279Google Scholar

    [24]

    Wu J, Traoré P, Zhang M, Pérez A T, Vázquez P A 2016 Int. J. Heat Mass Transfer 92 139Google Scholar

    [25]

    陈凤, 彭耀, 宋耀祖, 陈民 2007 工程热物理学报 4 679Google Scholar

    Chen F, Peng Y, Song Y Z, Chen M 2007 J. Eng. Therm. 4 679Google Scholar

    [26]

    Gao M, Cheng P, Quan X 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [27]

    Sadek H, Ching C Y, Cotton J 2010 Int. J. Heat Mass Transfer 53 3721Google Scholar

    [28]

    陈春天, 杨嘉祥, 张颖, 李静 2004 工程热物理学报 2 284Google Scholar

    Chen C T, Yang J X, Zhang Y, Li J 2004 J. Eng. Therm. 2 284Google Scholar

    [29]

    李典, 王太, 陈烁, 谢英柏, 刘春涛 2020 工程热物理学报 41 2752

    Li D, Wang T, Chen L, Xie Y B, Liu C T 2020 J. Eng. Therm. 41 2752

    [30]

    危卫, 张云伟, 顾兆林 2013 科学通报 58 197Google Scholar

    Wei W, Zhang Y W, Gu Z L 2013 Chin. Sci. Bull. 58 197Google Scholar

    [31]

    Nakhla D, Thompson E, Lacroix B, Cotton J S 2018 J. Electrostat. 92 31Google Scholar

    [32]

    Luo K, Pérez A T, Wu J, Yi H L, Tan H P 2019 Phys. Rev. E 100 013306Google Scholar

    [33]

    卢才磊 2020 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Lu C L 2020 M. D. Thesis (Haerbin: Harbin Institute of Technology) (in Chinese)

    [34]

    Selvakumar R D, Liu Q, Luo K, Traoré P, Wu J 2021 Int. J. Multiphase Flow 136 103550Google Scholar

    [35]

    Nakhla D, Cotton J S 2021 Int. J. Heat Mass Transfer 167 120828Google Scholar

    [36]

    Luo K, Wu J, Pérez A T, Yi H L, Tan H P 2019 Phys. Rev. Fluids 4 083702Google Scholar

    [37]

    Huang R Z, Wu H Y 2015 J. Comput. Phys. 294 346Google Scholar

    [38]

    罗康 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luo K 2017 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese)

    [39]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329Google Scholar

    [40]

    Wang L, Zhao Y, Yang X G, Shi B C, Chai Z H 2019 Appl. Math. Model. 71 31Google Scholar

    [41]

    黄昌盛, 张文欢, 侯志敏, 陈俊辉, 李明晶, 何南忠, 施保昌 2011 科学通报 56 2434Google Scholar

    Huang C S, Zhang W H, Hou Z M, Chen J H, Li M J, He N Z, Shi B C 2011 Chin. Sci. Bull. 56 2434Google Scholar

    [42]

    李洋, 苏婷, 梁宏, 徐江荣 2018 物理学报 67 224701Google Scholar

    Li Y, Su T, Liang H, Xu J R 2018 Acta Phys. Sin. 67 224701Google Scholar

    [43]

    梁宏 2015 博士学位论文 (武汉: 华中科技大学)

    Liang H 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [44]

    李庆, 余悦, 唐诗 2020 科学通报 65 1677Google Scholar

    Li Q, Yu Y, Tang S 2020 Chin. Sci. Bull. 65 1677Google Scholar

    [45]

    朱炼华, 郭照立 2015 计算物理 32 20Google Scholar

    Zhu L H, Guo Z L 2015 Chin. J. Comput. Phys. 32 20Google Scholar

    [46]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

    [47]

    吴健, 张蒙齐, 田方宝 2018 力学学报 50 1458Google Scholar

    Wu J, Zhang M Q, Tian F B 2018 Chin. J. Theor. Appl. Mech. 50 1458Google Scholar

    [48]

    Luo K, Wu J, Yi H L, Tan H P 2016 Phys. Rev. E 93 023309Google Scholar

    [49]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model 95 361Google Scholar

    [50]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [51]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308Google Scholar

    [52]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [53]

    Lu J H, Lei H Y, Dai C S 2019 Int. J. Therm. Sci. 135 17Google Scholar

    [54]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65Google Scholar

    [55]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007Google Scholar

    [56]

    Huang R Z, Wu H Y, Cheng P 2013 Int. J. Heat Mass Transfer 59 295Google Scholar

  • 图 1  物理模型示意图

    Fig. 1.  Schematic diagram of the physical model.

    图 2  液体体积分数$f_{\rm l}$和热壁面平均努塞尔数$Nu_{\rm av}$与Huang等[56]的结果对比

    Fig. 2.  A comparison of the present average Nusselt number and liquid fraction with previous study[56].

    图 3  电荷密度q和水平方向电场强度$E_x$与解析解[48]对比

    Fig. 3.  A comparison of the charge density and horizontal electric field with analytical solutions[48].

    图 4  PCM熔化过程中(a)液体体积分数$f_{\rm l}$和(b)液相最大速度$V_{\rm max}$随时间的变化趋势. 图中点A, B, CD分别对应时刻$Fo=0.63$, $1.90$, $2.90$$4.16$

    Fig. 4.  Time evolutions of (a) the liquid fraction and (b) the maximum fluid velocity. Points A, B, C and D correspond to the dimensionless time $Fo=0.36$, $1.90$, $2.90$ and $4.16$, respectively.

    图 5  电场力驱动下PCM熔化到不同时刻电荷密度、流场以及相界面分布(上)和浮升力驱动下PCM熔化到不同时刻温度、流场以及相界面分布(下) (a)$Fo=0.63$; (b)$Fo=1.90$; (c)$Fo=2.90$; (d)$Fo=4.16$

    Fig. 5.  Distributions of charge density (temperature), fluid field and liquid-solid interface of PCM at four representative time of (a)$Fo=0.63$, (b)$Fo=1.90$, (c)$Fo=2.90$ and (d)$Fo=4.16$ in presence of electric field force (top) and buoyancy force (bottom)

    图 6  不同电瑞利数T下液体体积分数$f_{\rm l}$随时间的变化曲线

    Fig. 6.  Time evolutions of the liquid fraction $f_{\rm l}$ for different electric Rayleigh numbers T.

    图 7  不同电瑞利数下$Fo=1.9$时电荷密度(上)、温度(中)以及流场(下)分布: (a) $T=0$; (b) $T=400$; (c) $T=800$; (d) $T=1600$; (e) $T=2400$

    Fig. 7.  Distribution of the charge density (top), temperature (middle) and streamlines (bottom) at $Fo=1.9$ under different electrical Rayleigh numbers: (a) $T=0$; (b) $T=400$; (c) $T=800$; (d) $T=1600$; (e) $T=2400$.

    图 8  $Fo=1.9$时 (a)直线$x=1/(4\delta)$上速度水平分量u的分布; (b)固液界面位置

    Fig. 8.  (a) Distributions of the horizontal velocity along line of $x=1/(4\delta)$ and (b) the liquid-solid interface at $Fo=1.9$

    图 9  (a)斯蒂芬数$Ste$对电场加速熔化效果的影响; (b)液相最大速度$V_{\rm max}$随液体体积分数$f_{\rm l}$的变化趋势

    Fig. 9.  (a) The effect of Stefan number $Ste$ on the melting time saving; (b) evolutions of the maximum fluid velocity $V_{\rm max}$ versus the liquid fraction $f_{\rm l}$.

    图 10  $T=1000$时, 不同的斯蒂芬数下, PCM熔化到$f_{\rm l}=0.3$, $f_{\rm l}=0.5$, $f_{\rm l}=0.9$时电荷密度、温度以及流场分布 (a)$Ste= $$ 0.05$; (b)$Ste=0.1$

    Fig. 10.  With $T=1000$, distributions of charge density, temperature field and streamlines of PCM melting at $f_{\rm l}=0.3$, $f_{\rm l}=0.5$, $f_{\rm l}=0.9$ for different Stefan number: (a) $Ste=0.05$; (b) $Ste=0.1$.

    图 11  $T=3200$ 时, 不同的斯蒂芬数下, PCM熔化到$f_{\rm l}=0.3$, $f_{\rm l}=0.5$, $f_{\rm l}=0.9$ 时电荷密度、温度以及流场分布 (a)$Ste= $$ 0.05$; (b)$Ste=0.1$

    Fig. 11.  With $T=3200$, distributions of charge density, temperature field and streamlines of PCM melting at $f_{\rm l}=0.3$, $f_{\rm l}=0.5$, $f_{\rm l}=0.9$ for different Stefan number: (a) $Ste=0.05$; (b) $Ste=0.1$.

    图 12  无量纲离子迁移率M与普朗特数$Pr$对电场强化相变传热效果的影响

    Fig. 12.  The effect of M and $Pr$ on the melting time saving.

    图 13  M取不同值, PCM完全熔化时电荷密度和温度分布图 (a)$Pr=1$; (b)$Pr=20$

    Fig. 13.  Distributions of charge density and temperature field when PCM is completely melted for (a) $Pr=1$ and (b) $Pr=20$.

  • [1]

    Luo X, Wang J H, Dooner M, Clarke J 2015 Appl. Energy 137 511Google Scholar

    [2]

    Chen H S, Cong T N, Yang W, Tan C Q, Li Y L, Ding Y L 2009 Prog. Nat. Sci. 19 291Google Scholar

    [3]

    霍宇涛 2018 博士学位论文 (徐州: 中国矿业大学)

    Huo Y T 2018 Ph. D. Dissertation (Xuzhou: China University of Mining and Technology) (in Chinese)

    [4]

    Ren Q L, Meng F L, Guo P H 2018 Int. J. Heat Mass Transfer 121 1214Google Scholar

    [5]

    赵耀 2018 博士学位论文 (上海: 上海交通大学)

    Zhao Y 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [6]

    Sharma A, Tyagi V V, Chen C R, Buddhi D 2009 Renewable Sustainable Energy Rev. 13 318Google Scholar

    [7]

    Agyenim F, Hewitt N, Eames P, Smyth M 2010 Renewable Sustainable Energy Rev. 14 615Google Scholar

    [8]

    Ren Q L 2019 Energy Convers. Manage. 180 784Google Scholar

    [9]

    Stritih U 2004 Int. J. Heat Mass Transfer 47 2841Google Scholar

    [10]

    Lacroix M, Benmadda M 1997 Numer. Heat Tranfer, Part A 31 71Google Scholar

    [11]

    Ji C Z, Qin Z, Low Z H, Dubey S, Choo F H, Duan F 2018 Appl. Therm. Eng. 129 269Google Scholar

    [12]

    Khodadadi J M, Hosseinizadeh S F 2007 Int. Commun. Heat Mass Transfer 34 534Google Scholar

    [13]

    Feng Y C, Li H X, Li L X, Bu L, Wang T 2015 Int. J. Heat Mass Transfer 81 415Google Scholar

    [14]

    Xiao X, Zhang P, Li M 2014 Int. J. Therm. Sci. 81 94Google Scholar

    [15]

    张涛, 余建祖 2007 制冷学报 6 13Google Scholar

    Zhang T, Yu J Z 2007 J. Refrigeration 6 13Google Scholar

    [16]

    Fan L W, Zhu Z Q, Zeng Y, Ding Q, Liu M J 2016 Int. J. Heat Mass Transfer 95 1057Google Scholar

    [17]

    Fan L W, Zhu Z Q, Liu M J, Xu C L, Zeng Y, Lu H, Tao Y Z 2016 J. Heat Transfer-Trans. ASME 138 122402Google Scholar

    [18]

    Oh Y K, Park S H, Cha K O 2001 KSME Int. J. 15 1882Google Scholar

    [19]

    Oh Y K, Park S H, Cho Y I 2002 Int. J. Heat Mass Transfer 45 4631Google Scholar

    [20]

    Nakhla D, Sadek H, Cotton J S 2015 Int. J. Heat Mass Transfer 81 695Google Scholar

    [21]

    Rashidi S, Bafekr H, Masoodi R, Languri M E 2017 J. Electrostat. 8 1Google Scholar

    [22]

    Atten P, Mc Cluskey F, Pérez A 1988 IEEE Transactions on Electrical Insulation 23 659Google Scholar

    [23]

    Traoré P, Pérez A T, Koulova D, Romat H 2010 J. Fluid Mech. 658 279Google Scholar

    [24]

    Wu J, Traoré P, Zhang M, Pérez A T, Vázquez P A 2016 Int. J. Heat Mass Transfer 92 139Google Scholar

    [25]

    陈凤, 彭耀, 宋耀祖, 陈民 2007 工程热物理学报 4 679Google Scholar

    Chen F, Peng Y, Song Y Z, Chen M 2007 J. Eng. Therm. 4 679Google Scholar

    [26]

    Gao M, Cheng P, Quan X 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [27]

    Sadek H, Ching C Y, Cotton J 2010 Int. J. Heat Mass Transfer 53 3721Google Scholar

    [28]

    陈春天, 杨嘉祥, 张颖, 李静 2004 工程热物理学报 2 284Google Scholar

    Chen C T, Yang J X, Zhang Y, Li J 2004 J. Eng. Therm. 2 284Google Scholar

    [29]

    李典, 王太, 陈烁, 谢英柏, 刘春涛 2020 工程热物理学报 41 2752

    Li D, Wang T, Chen L, Xie Y B, Liu C T 2020 J. Eng. Therm. 41 2752

    [30]

    危卫, 张云伟, 顾兆林 2013 科学通报 58 197Google Scholar

    Wei W, Zhang Y W, Gu Z L 2013 Chin. Sci. Bull. 58 197Google Scholar

    [31]

    Nakhla D, Thompson E, Lacroix B, Cotton J S 2018 J. Electrostat. 92 31Google Scholar

    [32]

    Luo K, Pérez A T, Wu J, Yi H L, Tan H P 2019 Phys. Rev. E 100 013306Google Scholar

    [33]

    卢才磊 2020 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Lu C L 2020 M. D. Thesis (Haerbin: Harbin Institute of Technology) (in Chinese)

    [34]

    Selvakumar R D, Liu Q, Luo K, Traoré P, Wu J 2021 Int. J. Multiphase Flow 136 103550Google Scholar

    [35]

    Nakhla D, Cotton J S 2021 Int. J. Heat Mass Transfer 167 120828Google Scholar

    [36]

    Luo K, Wu J, Pérez A T, Yi H L, Tan H P 2019 Phys. Rev. Fluids 4 083702Google Scholar

    [37]

    Huang R Z, Wu H Y 2015 J. Comput. Phys. 294 346Google Scholar

    [38]

    罗康 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Luo K 2017 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese)

    [39]

    Chen S, Doolen G D 1998 Annu. Rev. Fluid Mech. 30 329Google Scholar

    [40]

    Wang L, Zhao Y, Yang X G, Shi B C, Chai Z H 2019 Appl. Math. Model. 71 31Google Scholar

    [41]

    黄昌盛, 张文欢, 侯志敏, 陈俊辉, 李明晶, 何南忠, 施保昌 2011 科学通报 56 2434Google Scholar

    Huang C S, Zhang W H, Hou Z M, Chen J H, Li M J, He N Z, Shi B C 2011 Chin. Sci. Bull. 56 2434Google Scholar

    [42]

    李洋, 苏婷, 梁宏, 徐江荣 2018 物理学报 67 224701Google Scholar

    Li Y, Su T, Liang H, Xu J R 2018 Acta Phys. Sin. 67 224701Google Scholar

    [43]

    梁宏 2015 博士学位论文 (武汉: 华中科技大学)

    Liang H 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [44]

    李庆, 余悦, 唐诗 2020 科学通报 65 1677Google Scholar

    Li Q, Yu Y, Tang S 2020 Chin. Sci. Bull. 65 1677Google Scholar

    [45]

    朱炼华, 郭照立 2015 计算物理 32 20Google Scholar

    Zhu L H, Guo Z L 2015 Chin. J. Comput. Phys. 32 20Google Scholar

    [46]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

    [47]

    吴健, 张蒙齐, 田方宝 2018 力学学报 50 1458Google Scholar

    Wu J, Zhang M Q, Tian F B 2018 Chin. J. Theor. Appl. Mech. 50 1458Google Scholar

    [48]

    Luo K, Wu J, Yi H L, Tan H P 2016 Phys. Rev. E 93 023309Google Scholar

    [49]

    Wang L, Wei Z C, Li T F, Chai Z H, Shi B C 2021 Appl. Math. Model 95 361Google Scholar

    [50]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput. Phys. 165 288Google Scholar

    [51]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308Google Scholar

    [52]

    Chai Z H, Shi B C 2008 Appl. Math. Model. 32 2050Google Scholar

    [53]

    Lu J H, Lei H Y, Dai C S 2019 Int. J. Therm. Sci. 135 17Google Scholar

    [54]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65Google Scholar

    [55]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007Google Scholar

    [56]

    Huang R Z, Wu H Y, Cheng P 2013 Int. J. Heat Mass Transfer 59 295Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制. 物理学报, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究. 物理学报, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [3] 刘程, 梁宏. 三相流体的轴对称格子 Boltzmann 模型及其在 Rayleigh-Plateau 不稳定性的应用. 物理学报, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究. 物理学报, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [5] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [6] 张恒, 任峰, 胡海豹. 基于格子Boltzmann方法的幂律流体二维顶盖驱动流转捩研究. 物理学报, 2021, 70(18): 184703. doi: 10.7498/aps.70.20210451
    [7] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [8] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [9] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [10] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [11] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [16] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [19] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  5546
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-03-01
  • 上网日期:  2021-07-07
  • 刊出日期:  2021-07-20

/

返回文章
返回