搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德伯原子电磁诱导透明效应的光脉冲减速

赵嘉栋 张好 杨文广 赵婧华 景明勇 张临杰

引用本文:
Citation:

基于里德伯原子电磁诱导透明效应的光脉冲减速

赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰

Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms

Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie
PDF
HTML
导出引用
  • 基于铯里德伯原子的电磁诱导透明效应, 当光与原子能级频率共振时, 色散将剧烈变化, 吸收减弱. 此时光脉冲在原子介质中传播时, 将会出现减速. 在铯原子阶梯型三能级$6 {\rm S}_{1/2}\rightarrow6 {\rm P}_{3/2}\rightarrow49 {\rm D}_{5/2} $系统中, 观察到由色散曲线陡峭变化导致的探测光脉冲减速现象, 并系统研究了耦合光强度和原子气室温度对光脉冲减慢的影响. 实验结果表明, 耦合光越弱, 延迟时间越长; 原子气室温度越高, 减速效应越明显, 与理论计算相符. 实验结果为之后进行的通过光脉冲减速效应测量微波电场提供了实验基础.
    Based on the Electromagnetically-Induced-Transparency (EIT) effect of cesium Rydberg atoms, the dispersion of the probe light will experience a drastically change while the absorption is diminished, as the frequency of it is resonated with that of the corresponding atomic transition. In this case, as the light pulse propagates in the atomic medium, the group velocity of the pulse will be slowed. In the cesium atoms 3-ladder-level system ($ 6{\rm S}_{1/2}\rightarrow6{\rm P}_{3/2}\rightarrow49{\rm D}_{5/2} $),the frequency of the probe light is locked at the resonance transition of $ 6{\rm S}_{1/2}\rightarrow6{\rm P}_{3/2} $, while the transmission signal of 852 nm probe light is measured by scanning the coupling light frequency near the transition of $ 6{\rm P}_{3/2}\rightarrow49{\rm D}_{5/2} $, We observed the EIT phenomenon and explored the relationship between the power of coupling laser and linewidth of the EIT signal. The experimental results show that the linewidth of the EIT signal is proportional to the power of the coupling laser. Then under the two-photon resonance condition, the deceleration of the probe light pulse caused by the steep change of the dispersion curve is observed. We also systematically investigate the influences of coupling optical power and temperature of vapor cell on the slowing down of light pulse. The experimental results show that the weaker the coupled light was, the longer the delay time; and the higher the temperature of the atomic gas chamber was, the more obvious the deceleration effect would be observed, those of which are consistent with the theoretical calculations. The investigation of the deceleration of optical pulses based on the Rydberg Electromagnetically-Induced-Transparency is important for understanding the coherence mechanism of 3-ladder-level system and some potential applications, such as in Rydberg-atom-based electric field metrology. This research provides a new tool for the measurement of pulsed microwave electric field through the optical pulse deceleration effect.
      通信作者: 张好, haozhang@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0304203, 2016YFF0200104)和国家自然科学基金(批准号: 61975104)资助的课题
      Corresponding author: Zhang Hao, haozhang@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0304203, 2016YFF0200104) and the National Natural Science Foundation of China (Grant No. 61975104)
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Boller K, Imamolu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [3]

    Harris S E, Field J E, Kasapi A 1992 Phys. Rev. A 46 R29Google Scholar

    [4]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [5]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [6]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [7]

    Gorshkov A V, Andre A, Fleischhauer M, Sorensen A S, Lukin M D 2007 Phys. Rev. Lett. 98 123601Google Scholar

    [8]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar

    [9]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [10]

    Gorshkov A V, André A, Lukin M D, Sø rensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [11]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar

    [12]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [13]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [14]

    杜丹, 胡响明 2006 物理学报 55 5232Google Scholar

    Du D, Hu X M 2006 Acta Phys. Sin. 55 5232Google Scholar

    [15]

    李琴, 郭红 2011 物理学报 60 054204Google Scholar

    Li Q, Guo H 2011 Acta Phys. Sin. 60 054204Google Scholar

    [16]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803(RGoogle Scholar

    [17]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [18]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [19]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [20]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, de Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [21]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [22]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [23]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [24]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [25]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [26]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [27]

    闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂 2017 物理学报 66 243201Google Scholar

    Yan L Y, Li J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201Google Scholar

    [28]

    Javan A, Kocharovskaya O, Lee H, Scully M O 2002 Phys. Rev. A 66 013805Google Scholar

  • 图 1  铯原子阶梯型三能级系统示意图

    Fig. 1.  3-ladder-level-system of cesium atoms.

    图 2  理论得到归一化后的色散和吸收曲线 (a)打开(虚线)和关上(实线)耦合光时原子系综的色散; (b)打开(虚线)和关上(实线)耦合光时原子系综对探测光的吸收

    Fig. 2.  Theoretical plots of normalized absorption and dispersion: (a) Dispersion of cesium atoms ensemble with coupling laser on (dashed line) and off (solid line); (b) absorption of probe laser with coupling laser on (dashed line) and off (solid line)

    图 3  实验装置示意图(EOM为强度型电光调制器; $ \lambda/2 $为二分之一波片; PBS为偏振分束棱镜; Cell为铯原子气室; 852 HR/510 HT: 852 nm高反510 nm 高透镜; PD为探测器)

    Fig. 3.  Schematic diagram of the experimental setup. (EOM, electro-optic intensity; $ \lambda/2 $, half-wave plate; PBS, polarization beam splitter; Cell, Cesium vapor cell; 852 HR/510 HT, Dichroic beam splitter; PD, photoclectric detector).

    图 4  EIT信号随耦合光功率的变化 (a)不同耦合光功率下得到的EIT信号; (b) EIT线宽和EIT透射峰强度随耦合光功率的变化

    Fig. 4.  Change of EIT signal with coupling power: (a) EIT signals obtained under different coupling power; (b) EIT line width and peak intensity vary with coupling power.

    图 5  耦合光功率和温度对输出光脉冲的影响 (a) 耦合光功率为5mW时输出光脉冲与参考光脉冲的对比(强度上归一化); (b)温度为40℃时输出光脉冲与参考光脉冲的对比(强度上归一化); (c) 延迟时间随耦合光功率的变化; (d)延迟时间随原子密度的变化

    Fig. 5.  Change of output pulse with coupling power and tempreature: (a) Comparison of the output optical pulse and the reference optical pulse when the coupling optical power is 5mW (Normalization of intensity); (b) Comparison of the output optical pulse and the reference optical pulse when the temperature is 40℃(Normalization of intensity); (c) delay time vary with coupling power; (d) delay time vary with atom density.

    表 1  铯原子气室温度与密度的关系

    Table 1.  Relationship between cesium vapor cell temperature and density

    T/$^{\circ}\mathrm{C}$ 25 30 35 40
    N/($10^{11}\mathrm{cm^{-3}}$) 0.49 0.80 1.27 1.98
    下载: 导出CSV

    表 2  系统误差

    Table 2.  Systematic errors

    误差来源 光程差 铯原子气室 示波器通道 探测器
    延迟时间/ns 0.49 3.27 1.38 0.64
    下载: 导出CSV
  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Boller K, Imamolu A, Harris S E 1991 Phys. Rev. Lett. 66 2593Google Scholar

    [3]

    Harris S E, Field J E, Kasapi A 1992 Phys. Rev. A 46 R29Google Scholar

    [4]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar

    [5]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [6]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [7]

    Gorshkov A V, Andre A, Fleischhauer M, Sorensen A S, Lukin M D 2007 Phys. Rev. Lett. 98 123601Google Scholar

    [8]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783Google Scholar

    [9]

    窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏 2019 物理学报 68 030307Google Scholar

    Dou J P, Li H, Pang X L, Zhang C N, Yang T H, Jin X M 2019 Acta Phys. Sin. 68 030307Google Scholar

    [10]

    Gorshkov A V, André A, Lukin M D, Sø rensen A S 2007 Phys. Rev. A 76 033805Google Scholar

    [11]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar

    [12]

    Kasapi A, Jain M, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [13]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594Google Scholar

    [14]

    杜丹, 胡响明 2006 物理学报 55 5232Google Scholar

    Du D, Hu X M 2006 Acta Phys. Sin. 55 5232Google Scholar

    [15]

    李琴, 郭红 2011 物理学报 60 054204Google Scholar

    Li Q, Guo H 2011 Acta Phys. Sin. 60 054204Google Scholar

    [16]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803(RGoogle Scholar

    [17]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [18]

    Li L, Kuzmich A 2016 Nat. Commun. 7 13618Google Scholar

    [19]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001Google Scholar

    [20]

    Distante E, Padrón-Brito A, Cristiani M, Paredes-Barato D, de Riedmatten H 2016 Phys. Rev. Lett. 117 113001Google Scholar

    [21]

    Dudin Y O, Kuzmich A 2012 Science 336 887Google Scholar

    [22]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [23]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [24]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169Google Scholar

    [25]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [26]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [27]

    闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂 2017 物理学报 66 243201Google Scholar

    Yan L Y, Li J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201Google Scholar

    [28]

    Javan A, Kocharovskaya O, Lee H, Scully M O 2002 Phys. Rev. A 66 013805Google Scholar

  • [1] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20240900
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [4] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [5] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [6] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [7] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [8] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [9] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [10] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [11] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [12] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [13] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [14] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [15] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [16] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [17] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [18] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [19] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [20] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
计量
  • 文章访问数:  5769
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-04
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回