-
高熵合金突破了传统合金的组成框架, 呈现出独特而优越的力学性能. 然而, 作为合金家族近年来出现的新成员, 高熵合金的潜在变形机制亟需进一步揭示. 本文采用分子动力学模拟方法研究了纳米孪晶Cr26Mn20Fe20Co20Ni14高熵合金在拉伸载荷下的力学性能, 从原子水平揭示了孪晶界对纳米孪晶Cr26Mn20Fe20Co20Ni14高熵合金变形行为的影响. 研究结果表明, 纳米孪晶Cr26Mn20Fe20Co20Ni14高熵合金的屈服强度随着孪晶界间距的减小而增大, 呈现Hall-Petch关系. 然而, 孪晶界间距存在一个临界值, 使得高熵合金的屈服强度在该值前后对孪晶界间距的敏感度发生了明显改变. 研究指出, 随着孪晶界间距的减小, 纳米孪晶Cr26Mn20Fe20Co20Ni14高熵合金的变形机制发生了从以位错滑移主导到以非晶化相变为主的转变. 本文的研究结果对于设计和制备高性能的高熵合金具有一定的参考价值和指导意义.The high-entropy alloys break through the traditional alloy structure and present unique and superior mechanical properties. However, the potential deformation mechanism of high-entropy alloy, which is regarded as a new member of alloy families in recent years, needs to be further investigated. In this paper, the mechanical properties of the nano-twin Cr26Mn20Fe20Co20Ni14 high-entropy alloy under tensile loading are studied by molecular dynamics simulation, and the effect of twin boundary on the deformation behavior of nano-twin Cr26Mn20Fe20Co20Ni14 high-entropy alloy is studied on an atomic level. The results show that the yield strength of the nano-twin Cr26Mn20Fe20Co20Ni14 high-entropy alloy increases with twin boundary spacing decreasing, presenting a Hell-Petch relationship. However, there is a critical value of the twin boundary spacing, which makes the sensitivity of the yield strength of the high-entropy alloy to the twin boundary spacing change significantly before and after this value. The results also indicate that the deformation mechanism of nano-twin Cr26Mn20Fe20Co20Ni14 high-entropy alloy changes from dislocation slip to amorphous phase transition with the decrease of twin boundary spacing. The research results of this paper have a certain reference value and guidance significance for designing and preparing high-performance high-entropy alloys.
[1] Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast 114 161Google Scholar
[2] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 69 046102Google Scholar
Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin 69 046102Google Scholar
[3] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375 213Google Scholar
[4] Lu N, Du K, Lu L, Ye H Q 2015 Nat. Commun 6 7648Google Scholar
[5] Lu K, Lu L, Suresh S 2009 Science 324 349Google Scholar
[6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳 2018 物理学报 67 190202Google Scholar
Li R, Liu T, Chen X, Chen S C, Fu Y H, Liu L 2018 Acta Phys. Sin 67 190202Google Scholar
[7] Li X Y, Wei Y J, Lu L, Lu K, Gao H J 2010 Nature 464 877Google Scholar
[8] Huang C, Peng X H, Fu T, Chen X, Xiang H G, Li Q B, Hu N 2017 Mater. Sci. Eng. A 700 609Google Scholar
[9] 邵宇飞, 孟凡顺, 李久会, 赵星 2019 物理学报 68 216201Google Scholar
Shao Y F, Meng F S, Li J H, Zhao X 2019 Acta Phys. Sin 68 216201Google Scholar
[10] Hsieh K T, Lin Y Y, Lu C H, Yang J R, Liaw P K, Kuo C L 2020 Comput. Mater. Sci 184 109864Google Scholar
[11] Tian Y Y, Fang Q H, Li J 2020 Nanotechnology 31 465701Google Scholar
[12] Yan S H, Qin Q H, Zhong Z 2020 Nanotechnology 31 385705Google Scholar
[13] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar
[14] Gao X Z, Lu Y P, Liu J Z, Wang J,Wang T M, Zhao Y H 2019 Materialia 8 100485Google Scholar
[15] Wang Z, Wang C, Zhao Y L, Hsu Y C, Li C L, Kai J J, Liu C T, Hsueh C H 2020 Int. J. Plast 131 102726Google Scholar
[16] Hirel P 2015 Comput. Phys. Comm 197 212Google Scholar
[17] Xiao J W, Deng C 2020 Phys. Rev. Materials 4 043602Google Scholar
[18] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[19] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater 4 1Google Scholar
[20] Korchuganov A V 2019 J. Phys. Conf. Ser 1147 012013Google Scholar
[21] Hou J L, Li Q, Wu C B, Zheng L M 2019 Materials 12 1010Google Scholar
[22] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[23] Stukowski A 2010 Model. Simul. Mater. Sci. Eng 18 015012Google Scholar
[24] Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[25] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng 20 085007Google Scholar
[26] Xiao J W, Deng C 2020 Mater. Sci. Eng. A 793 139853Google Scholar
[27] Zhao S J, Stocks G M, Zhang Y W 2017 Acta. Mater 134 334Google Scholar
[28] Wu H A 2004 Comput. Mater. Sci 31 287Google Scholar
[29] Guo X, Xia Y Z 2011 Acta. Mater 59 2350Google Scholar
[30] 孙倩, 杨熊博, 高亚军, 赵健伟 2014 物理化学学报 30 2015Google Scholar
Sun Q, Yang X B, Gao Y J, Zhao J W 2014 Acta Phys. Chim. Sin 30 2015Google Scholar
[31] Zhao S, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Bringa E M, Meyers M A 2016 Acta. Mater 103 519Google Scholar
[32] Wu W Q, Ni S, Liu Y, Liu B, Song M 2017 Mater. Charact 127 111Google Scholar
[33] Zhao S T, Li Z Z, Zhu C Y, Yang W, Zhang Z R, Armstrong D E, Grant P S, Ritchie R O, Meyers M A 2021 Sci. Adv 7 3108Google Scholar
[34] Chen Z, Jin Z, Gao H 2007 Phys. Rev. B 75 212104Google Scholar
[35] Hao L H, Liu Q, Fang Y Y, Huang M, Li W, Lu Y, Luo J F, Guan P F, Zhang Z, Wang L H, Han X D 2019 Comput. Mater. Sci 169 109087Google Scholar
[36] Park H S, Gall K, Zimmerman J A 2005 Phys. Rev. Lett 95 255504Google Scholar
-
图 1 (a) nt-HEA的原子分布图; (b) nt-HEA的模型结构图, 其中绿色区域代表FCC结构, 红色区域代表孪晶界(TB); (c) CrMnFeCoNi HEA与Cr26Mn20Fe20Co20Ni14 HEA的SFE曲线图
Fig. 1. (a) Atomic distribution of the nt-HEA; (b) model structure of the nt-HEA, in which the green regions represent the FCC structure and the red regions represent the twin boundary (TB); (c) SFE curves of CrMnFeCoNi HEA and Cr26Mn20Fe20Co20Ni14 HEA.
图 7 孪晶界间距为0.62 nm的nt-HEA的MT相变和DT变形的分析快照图(左侧为CNA分析图, 右侧为DXA分析图), 其中, (a)和(b)的应变为8.6%; (c)和(d)的应变为8.4%; (e)和(f)的应变为12.2%; (g)和(h)的应变为13.5%
Fig. 7. Analysis snapshot of MT phase transition and DT deformation of the nt-HEA with the twin boundary spacing of 0.62 nm (CNA analysis diagram on the left and DXA analysis diagram on the right), in which the strains of (a) and (b) are 8.6%; (c) and (d) are 8.4%; (e) and (f) are 12.2%; (g) and (h) are 13.5%.
-
[1] Fang Q H, Chen Y, Li J, Jiang C, Liu B, Liu Y, Liaw P K 2019 Int. J. Plast 114 161Google Scholar
[2] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞 2020 物理学报 69 046102Google Scholar
Ren X L, Zhang W W, Wu X Y, Wu L, Wang Y X 2020 Acta Phys. Sin 69 046102Google Scholar
[3] Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375 213Google Scholar
[4] Lu N, Du K, Lu L, Ye H Q 2015 Nat. Commun 6 7648Google Scholar
[5] Lu K, Lu L, Suresh S 2009 Science 324 349Google Scholar
[6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳 2018 物理学报 67 190202Google Scholar
Li R, Liu T, Chen X, Chen S C, Fu Y H, Liu L 2018 Acta Phys. Sin 67 190202Google Scholar
[7] Li X Y, Wei Y J, Lu L, Lu K, Gao H J 2010 Nature 464 877Google Scholar
[8] Huang C, Peng X H, Fu T, Chen X, Xiang H G, Li Q B, Hu N 2017 Mater. Sci. Eng. A 700 609Google Scholar
[9] 邵宇飞, 孟凡顺, 李久会, 赵星 2019 物理学报 68 216201Google Scholar
Shao Y F, Meng F S, Li J H, Zhao X 2019 Acta Phys. Sin 68 216201Google Scholar
[10] Hsieh K T, Lin Y Y, Lu C H, Yang J R, Liaw P K, Kuo C L 2020 Comput. Mater. Sci 184 109864Google Scholar
[11] Tian Y Y, Fang Q H, Li J 2020 Nanotechnology 31 465701Google Scholar
[12] Yan S H, Qin Q H, Zhong Z 2020 Nanotechnology 31 385705Google Scholar
[13] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153Google Scholar
[14] Gao X Z, Lu Y P, Liu J Z, Wang J,Wang T M, Zhao Y H 2019 Materialia 8 100485Google Scholar
[15] Wang Z, Wang C, Zhao Y L, Hsu Y C, Li C L, Kai J J, Liu C T, Hsueh C H 2020 Int. J. Plast 131 102726Google Scholar
[16] Hirel P 2015 Comput. Phys. Comm 197 212Google Scholar
[17] Xiao J W, Deng C 2020 Phys. Rev. Materials 4 043602Google Scholar
[18] Nosé S 1984 J. Chem. Phys. 81 511Google Scholar
[19] Choi W M, Jo Y H, Sohn S S, Lee S, Lee B J 2018 NPJ Comput. Mater 4 1Google Scholar
[20] Korchuganov A V 2019 J. Phys. Conf. Ser 1147 012013Google Scholar
[21] Hou J L, Li Q, Wu C B, Zheng L M 2019 Materials 12 1010Google Scholar
[22] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[23] Stukowski A 2010 Model. Simul. Mater. Sci. Eng 18 015012Google Scholar
[24] Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar
[25] Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sci. Eng 20 085007Google Scholar
[26] Xiao J W, Deng C 2020 Mater. Sci. Eng. A 793 139853Google Scholar
[27] Zhao S J, Stocks G M, Zhang Y W 2017 Acta. Mater 134 334Google Scholar
[28] Wu H A 2004 Comput. Mater. Sci 31 287Google Scholar
[29] Guo X, Xia Y Z 2011 Acta. Mater 59 2350Google Scholar
[30] 孙倩, 杨熊博, 高亚军, 赵健伟 2014 物理化学学报 30 2015Google Scholar
Sun Q, Yang X B, Gao Y J, Zhao J W 2014 Acta Phys. Chim. Sin 30 2015Google Scholar
[31] Zhao S, Hahn E N, Kad B, Remington B A, Wehrenberg C E, Bringa E M, Meyers M A 2016 Acta. Mater 103 519Google Scholar
[32] Wu W Q, Ni S, Liu Y, Liu B, Song M 2017 Mater. Charact 127 111Google Scholar
[33] Zhao S T, Li Z Z, Zhu C Y, Yang W, Zhang Z R, Armstrong D E, Grant P S, Ritchie R O, Meyers M A 2021 Sci. Adv 7 3108Google Scholar
[34] Chen Z, Jin Z, Gao H 2007 Phys. Rev. B 75 212104Google Scholar
[35] Hao L H, Liu Q, Fang Y Y, Huang M, Li W, Lu Y, Luo J F, Guan P F, Zhang Z, Wang L H, Han X D 2019 Comput. Mater. Sci 169 109087Google Scholar
[36] Park H S, Gall K, Zimmerman J A 2005 Phys. Rev. Lett 95 255504Google Scholar
计量
- 文章访问数: 6169
- PDF下载量: 263
- 被引次数: 0