搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用

李泽宇 姜去寒 马腾洲 袁英豪 陈麟

引用本文:
Citation:

基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用

李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟

Multi-parameter tunable phase transition based terahertz graphene plasmons and its application

Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin
PDF
HTML
导出引用
  • 太赫兹波的振幅和相位进行主动调控由于在太赫兹功能器件方面的广泛应用, 受到了广泛关注. 目前采用的金属-介质-金属超表面结构结合石墨烯等二维材料可实现太赫兹振幅/相位的动态调控, 但存在调控自由度少(电压或光强)以及超表面结构加工工艺复杂及价格昂贵等缺点. 本文提出了一种棱镜耦合石墨烯等离激元结构的相位调控结构. 该结构不仅可以通过通常方式调控费米能级实现对相位的调控, 还可以通过调控空气隙的厚度和预铺石墨烯的层数改变结构的本征损耗和辐射损耗, 从而对结构的相位进行调控, 这是由结构中的本征损耗和辐射损耗的差值决定, 与结构处于欠耦合/过耦合状态密切相关. 对结构相位的调控还会导致太赫兹古斯汉欣位移大小和正负的选择. 进一步, 本文阐述了结构的欠耦合和过耦合状态对古斯汉欣位移的符号有重要影响. 结果表明, 通过对空气隙的厚度和石墨烯的费米能级进行动态调控, 改变系统的本征损耗和辐射损耗, 可以实现相位的调控, 最终实现过阻尼到欠阻尼的转变. 在此物理过程中, 系统的古斯汉欣位移也会发生明显的变化. 与金属-介质-金属超表面结构相位调控器相比, 本文提出的结构具有工艺简单(不需要微结构加工工艺), 可调谐自由度高(可利用石墨烯费米能级和空气隙动态调控, 还可通过控制石墨烯层数调控)等优点. 本文结果为多参数可调谐的太赫兹传感器件的发展开辟了新的途径.
    The active modulation of the amplitude and phase of terahertz wave has been widely adopted in terahertz functional devices. The current metal-insulator-metal metasurface structure combined with two-dimensional materials such as graphene can realize dynamic control of terahertz amplitude/phase, but it has some disadvantages such as less freedom of control (voltage or light intensity), complex processing technology and high price of metasurface structure. In this article, we propose a prism-coupled matel-insulator-graphene (MIG) phase regulation structure. This structure can not only control the phase by adjusting the Fermi level in the usual way, but also change the intrinsic loss and radiation loss of the structure by adjusting the thickness of the air gap and the number of layers of pre-spread graphene, so that the phase of the structure can be controlled, which is determined by the difference between intrinsic loss and radiation loss of the fabric, which is closely related to this structure staying in the under-coupling/over-coupling state. The adjustment of the structural phase can also lead the magnitude of the terahertz Goos–Hänchen(GH) displacement and its positive sign and negative sign to be selected. Furthermore, it is shown that the under-coupling state and the over-coupling state of the structure have an important effect on the coincidence of the Goos–Hanchen (GH) displacement. The results show that by dynamically adjusting the thickness of the air gap and the Fermi level of graphene, and changing the eigenloss and radiation loss of the system, the phase regulation can be achieved. Finally, the transition from overdamped to underdamped state is realized. In this physical process, the GH displacement of the system will also change obviously. This paper puts forward the structure of the process with simple processing technology (no need to microstructure), tunable high degrees of freedom (available graphene Fermi level and air gap dynamic regulation, also could be regulated and controlled by controlling the graphene layers) in comparison with the phase modulator of metal-insulator-metal super surface structure. The results of this paper open up a new way of developing the multi-parameter tunable terahertz sensor components.
      通信作者: 袁英豪, yhyuan@usst.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF01013000, 2019YFC0810900)、国家自然科学基金(批准号: 61671302)、上海市曙光计划(批准号: 18SG44)、国家自然科学基金基础科学中心项目(批准号: 61988102)、上海市中央引导地方科技发展专项(批准号: YDZX20193100004960)和海关总署科研项目(批准号: 2020HK251)资助的课题.
      Corresponding author: Yuan Ying-Hao, yhyuan@usst.edu.cn
    • Funds: Project supported by the National key R&D Program (Grant Nos. 2018YFF01013000, 2019YFC0810900), the National Natural Science Foundation of China (Grant No. 61671302), the Shanghai Shuguang Program, China (Grant No. 18SG44), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 61988102), the Shanghai Central Government Guided Local Science and Technology Development Project, China (Grant No. YDZX20193100004960), the Scientific Research Project of the General Administration of Customs, China (Grant No. 2020HK251).
    [1]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807Google Scholar

    [2]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [3]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [4]

    Sievenpiper D, Zhang L J, Broas R F J, et al. 1999 IEEE Trans. Microwave Theory Tech. 47 2059Google Scholar

    [5]

    Zhou L, Wen W J, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 3257Google Scholar

    [6]

    Anders P, Sergey I B 2013 Opt. Express 21 27438Google Scholar

    [7]

    Dai Ch L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T 2020 InfoMat. 2 12039

    [8]

    Ding L, Qiu T Y, Zhang J, Wen X 2019 J. Opt. 21 125602Google Scholar

    [9]

    Hu T, Bingham C M, Strikwerda A C, et al. 2008 Phys. Rev. B 78 241103Google Scholar

    [10]

    Hao J M, Wang J, Liu X L, Willie J P, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [11]

    Liu N, Martin M, Thomas W, Mario H, Harald G 2010 Nano Lett. 10 2342Google Scholar

    [12]

    Claire M W, Liu X L, Willie J P 2012 Adv. Mater. 24 OP98

    [13]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano Lett. 12 6223Google Scholar

    [14]

    Anders P, Ole A, Ilya P R, Sergey I B 2013 Sci. Rep. 3 2155Google Scholar

    [15]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [16]

    Anders P, Michael G. N, René L E, Sergey I B 2013 Nano Lett. 13 829Google Scholar

    [17]

    Chen L, Wei M Y, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [18]

    Chen L, Xu N N, Leena S, Cui T J, Ranjan S, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [19]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024

    [20]

    Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B, Zhou L 2015 Phys. Rev. X 5 041027

    [21]

    Qu C, Ma S J, Hao J M, Qiu M, et al. 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [22]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [23]

    Cong L Q, Pitchappa P, Lee C K, Singh R 2017 Adv. Mater. 29 1700733Google Scholar

    [24]

    Chen L, Ge Y F, Zang X F, et al. 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [25]

    Yin S, Shi X T, Huang W, Zhang W T, Hu F R, Qin Z J, Xiong X M 2019 Electronics 8 1528Google Scholar

    [26]

    Li J S, Wu J F, Zhang L 2014 IEEE Photonics J. 6 2374591

    [27]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [28]

    Chen L, Cao Z Q, Shen Q S, Deng X X 2007 J. Lightwave Technol. 25 539Google Scholar

    [29]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [30]

    Chen L, Cao Z Q, Ou F, Li H G, Shen Q S, Qiao H C 2007 Opt. Lett. 32 1432Google Scholar

    [31]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

  • 图 1  棱镜耦合石墨烯等离激元结构示意图

    Fig. 1.  Schematic diagram of prism coupled graphene plasmons.

    图 2  不同费米能级下石墨烯电导率的实部虚部随频率的变化曲线 (a) 石墨烯电导率实部 (b) 石墨烯电导率虚部

    Fig. 2.  Curves of real and imaginary parts of graphene conductivity with frequency at different Fermi levels: (a) The real part of graphene conductivity; (b) the imaginary part of graphene conductivity.

    图 3  在不同费米能级下, 系统的反射率(a)、相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随费米能级的变化产生的突变

    Fig. 3.  The reflectance(a), phase (b), and GH shift (c) of the system are corresponding to frequency at different Fermi levels; (d) GH shifts with respect to Fermi levels.

    图 4  在不同的空气层厚度下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随空气隙厚度的变化产生的突变

    Fig. 4.  The reflectance(a), phase (b) and GH displacement (c) of the system are corresponding to the frequency at different air layer thicknesses; (d) GH shifts with respect to air layer thicknesses

    图 5  在不同的石墨烯层数下, 系统的反射率(a), 相位(b)和GH位移(c)随频率的对应关系; (d)GH位移随石墨烯层数的变化产生的突变

    Fig. 5.  The reflectance (a), phase (b), and GH shift (c) of the system are corresponding to frequency at different graphene layers; (d) GH shifts with respect to number of graphene layers.

    图 6  结构体系的临界阻尼分界图

    Fig. 6.  Critical condition of perfect damping match.

    图 7  在空气腔中(a)不同的折射率变化下, 系统的反射率(c), 相位(b)和GH位移(d)随频率的对应关系

    Fig. 7.  The reflectance (c), phase (b) and GH displacement (d) of the system as a function of frequency under different refractive index changes in the air cavity (a).

    图 8  (a) 反射共振频率随折射率的变化(灵敏度为160 GHz/RIU); (b) GH位移强度随折射率的变化(灵敏度为2.1×104 λ/RIU)

    Fig. 8.  (a) Reflection resonant frequency as a function of refractive index (sensitivity is 160 GHz/RIU); (b) GH shift intensity as a function of refractive index (Sensitivity is 2.1 × 104 λ /RIU).

    图 9  测GH位移的实验方案

    Fig. 9.  Experimental scheme for measuring GH shift.

  • [1]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807Google Scholar

    [2]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [3]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Technol. Electron. Eng. 20 591Google Scholar

    [4]

    Sievenpiper D, Zhang L J, Broas R F J, et al. 1999 IEEE Trans. Microwave Theory Tech. 47 2059Google Scholar

    [5]

    Zhou L, Wen W J, Chan C T, Sheng P 2003 Appl. Phys. Lett. 83 3257Google Scholar

    [6]

    Anders P, Sergey I B 2013 Opt. Express 21 27438Google Scholar

    [7]

    Dai Ch L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T 2020 InfoMat. 2 12039

    [8]

    Ding L, Qiu T Y, Zhang J, Wen X 2019 J. Opt. 21 125602Google Scholar

    [9]

    Hu T, Bingham C M, Strikwerda A C, et al. 2008 Phys. Rev. B 78 241103Google Scholar

    [10]

    Hao J M, Wang J, Liu X L, Willie J P, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104Google Scholar

    [11]

    Liu N, Martin M, Thomas W, Mario H, Harald G 2010 Nano Lett. 10 2342Google Scholar

    [12]

    Claire M W, Liu X L, Willie J P 2012 Adv. Mater. 24 OP98

    [13]

    Sun S L, Yang K Y, Wang C M, et al. 2012 Nano Lett. 12 6223Google Scholar

    [14]

    Anders P, Ole A, Ilya P R, Sergey I B 2013 Sci. Rep. 3 2155Google Scholar

    [15]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [16]

    Anders P, Michael G. N, René L E, Sergey I B 2013 Nano Lett. 13 829Google Scholar

    [17]

    Chen L, Wei M Y, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [18]

    Chen L, Xu N N, Leena S, Cui T J, Ranjan S, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [19]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024

    [20]

    Miao Z Q, Wu Q, Li X, He Q, Ding K, An Z H, Zhang Y B, Zhou L 2015 Phys. Rev. X 5 041027

    [21]

    Qu C, Ma S J, Hao J M, Qiu M, et al. 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [22]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [23]

    Cong L Q, Pitchappa P, Lee C K, Singh R 2017 Adv. Mater. 29 1700733Google Scholar

    [24]

    Chen L, Ge Y F, Zang X F, et al. 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [25]

    Yin S, Shi X T, Huang W, Zhang W T, Hu F R, Qin Z J, Xiong X M 2019 Electronics 8 1528Google Scholar

    [26]

    Li J S, Wu J F, Zhang L 2014 IEEE Photonics J. 6 2374591

    [27]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [28]

    Chen L, Cao Z Q, Shen Q S, Deng X X 2007 J. Lightwave Technol. 25 539Google Scholar

    [29]

    Artmann K 1948 Ann. Phys. 437 87Google Scholar

    [30]

    Chen L, Cao Z Q, Ou F, Li H G, Shen Q S, Qiao H C 2007 Opt. Lett. 32 1432Google Scholar

    [31]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解. 物理学报, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [3] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] 宋克超, 霍帅楠, 涂冬明, 侯新富, 吴晓静, 王明伟. 二维黑磷对太赫兹波调控特性的理论研究. 物理学报, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [5] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [6] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [7] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [10] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性. 物理学报, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [11] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [12] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [13] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [14] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构. 物理学报, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [15] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [16] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [17] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [20] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
计量
  • 文章访问数:  6083
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-06-02
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回