搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响

许思维 杨晓宁 杨大鑫 王训四 沈祥

引用本文:
Citation:

S取代Se对Ge11.5As24Se64.5–xSx玻璃结构及光学性质的影响

许思维, 杨晓宁, 杨大鑫, 王训四, 沈祥

Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass

Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang
PDF
HTML
导出引用
  • 本文制备了硫系玻璃Ge11.5As24Se64.5–xSx (x = 0, 16.125%, 32.25%, 48.375%和64.5%)并研究了其光学性质, 目的在于筛选可用于光学器件的最佳组分. 通过测试该系列玻璃的激光损伤阈值、折射率、三阶非线性折射率以及吸收光谱, 结果发现, 玻璃中的Se被S原子逐渐替代后, 玻璃的线性和三阶非线性折射率逐渐降低, 玻璃光学带隙和激光损伤阈值不断升高. 我们进一步利用拉曼散射光谱和高分辨率X射线光电子能谱研究导致这些物理性能变化的结构起源, 通过分析玻璃中不同结构单元的演变过程, 发现在这些玻璃网络结构中均以异极键(Ge—Se/S, As—Se/S)为主, 且相对于Se而言, Ge和As优先与S结合成键. 随着玻璃结构中S/Se比例的增加, 与Se相关的化学键(Ge—Se, As—Se和Se—Se)数量逐渐减少, S相关化学键(Ge—S, As—S和S—S)数量逐渐增加, 但这对玻璃的拓扑结构几乎没有影响. 由此可以断定引起玻璃物理性质变化的主要原因是玻璃结构体系中各个化学键强度之间的差异.
    In this paper, chalcogenide glasses Ge11.5As24Se64.5–xSx (x = 0, 16.125%, 32.25%, 48.375% and 64.5%) are prepared and their optical properties are studied in order to select the best components for the use in optical devices. The values of laser damage threshold, refractive index, and third-order nonlinear refractive index, as well as the absorption spectra of the glasses are measured. The results show that the linear and third-order nonlinear refractive indices of the glass decrease gradually, the glass optical band gap increases gradually, and the laser damage threshold increases continuously after the high threshold component S atoms have been introduced gradually. We further investigate the structural origins of these changes in physical properties by Raman scattering spectra and high resolution X-ray photoelectron spectroscopy. By analyzing the evolution process of different structural units in the glass, it is found that the heteropolar bonds (Ge—Se/S, As—Se/S) are dominant in these glass network structures, and compared with Se, and that Ge and As prefer to bond with S. As the ratio of S/Se increases, the number of chemical bonds related to Se (Ge—Se, As—Se and Se—Se) decreases gradually, while the number of chemical bonds related to Se (Ge—S, As—S and S—S) increases gradually, which has little effect on the change of the topological structure of glass. It can be concluded that the main reason for the change of physical properties of glass is the difference of the strength between chemical bonds in the glass structural system.
      通信作者: 许思维, xusiwei1227@163.com
    • 基金项目: 国家自然科学基金(批准号: 62004067, 11847159)、湖南省自然科学基金(批准号: 2019JJ50410)和湖南省教育厅科学研究项目(批准号: 18C0744)资助的课题
      Corresponding author: Xu Si-Wei, xusiwei1227@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62004067, 11847159), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50410), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 18C0744)
    [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [5]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [6]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [7]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar

    [8]

    Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar

    [9]

    Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar

    [10]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar

    [11]

    Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar

    [12]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 物理学报 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [13]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [14]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [15]

    Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar

    [16]

    Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar

    [17]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [18]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [21]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [22]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [23]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [24]

    Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar

    [25]

    Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar

    [26]

    Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar

    [27]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85

    [28]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [29]

    Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar

    [30]

    Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128

    [31]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar

    [32]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [33]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488

    [34]

    Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar

    [35]

    Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar

    [36]

    Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar

    [37]

    Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar

  • 图 1  Ge11.5As24Se64.5–xSx玻璃制备的流程图

    Fig. 1.  Flow chart of Ge11.5As24Se64.5–xSx glasses fabrication.

    图 2  Ge11.5As24Se64.5–xSx玻璃的拉曼散射光谱分峰拟合图

    Fig. 2.  Raman scattering spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    图 3  (a) Ge11.5As24Se64.5–xSx 玻璃的S2p 的XPS分解; (b) Ge11.5As24Se64.5–xSx 玻璃的Se3d 的XPS分解

    Fig. 3.  (a) S2p spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions; (b) Se3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    图 4  (a) Ge11.5As24Se64.5–xSx 玻璃的Ge3d 的XPS分解; (b) Ge11.5As24Se64.5–xSx 玻璃的As3d 的XPS分解

    Fig. 4.  (a) Ge3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions; (b) As3d spectra of Ge11.5As24Se64.5–xSx glasses and their decompositions.

    表 1  Ge11.5As24Se64.5–xSx的组分与光学参数(n, Ith, Egn2)

    Table 1.  Compositions and optical parameters (n, Ith, Eg and n2) of Ge11.5As24Se64.5–xSx glasses.

    Ge11.5As24
    Se64.5–xSx
    nIth/(W·cm–2)Eg/eVn2/(10–14 W·cm–2)
    x = 02.6393.95 × 1051.8597.411
    x = 16.1252.54614.78 × 1051.8985.498
    x = 32.252.45121.40 × 1051.9793.679
    x = 48.3752.37835.29 × 1052.0692.751
    x = 64.52.2612.3472.187
    下载: 导出CSV

    表 2  拉曼散射光谱分峰拟合中各个结构单元的相对比例

    Table 2.  Relative ratio of the different structural units derived from the decomposed Raman scattering spectra.

    Ge
    Se4/2
    (CS)
    /%
    Ge
    Se4/2
    (ES)
    /%
    As
    Se3/2/%
    Se-Se/%As-Se/%As
    S3/2/%
    Ge
    S4/2
    (CS)/%
    Ge
    S4/2
    (ES)/%
    As-S/%S-S/%
    Ge11.5As24Se64.514.797.5245.369.2823.0500000
    Ge11.5As24Se48.375S16.12510.246.9736.366.2721.575.962.357.632.650
    Ge11.5As24Se32.25S32.254.984.6325.652.0919.0816.269.4711.925.610.31
    Ge11.5As24Se16.125S48.3750.942.2013.920.5816.8426.1611.9419.167.470.79
    Ge11.5As24S64.50000041.6414.5529.2113.521.08
    下载: 导出CSV

    表 3  Ge11.5As24Se64.5–xSx 玻璃的Ge3d, As3d, Se3d 和S2p 的XPS的拟合参数

    Table 3.  The fitting parameters for the decomposed Ge3d, As3d, Se3d and S2p spectra of Ge11.5As24Se64.5–xSx glasses.

    Structural unit
    Se-Se-
    Ge/As
    As/Ge-Se-Ge/AsS-S-
    Ge/As
    As/Ge-S-Ge/AsAsSe/S3/2As-As-
    related structure
    GeSe/S4/2Ge-Ge-
    related structure
    Ge11.5As24Se64.5 BE/eV 54.9 54.5 43.0 31.3
    FWHM/eV 1.11 1.13 1.03 1.01
    Content/% 18 82 100 100
    Ge11.5As24
    Se48.375S16.125
    BE/eV 55.0 54.6 162.1 42.9 31.3
    FWHM/ eV 1.10 1.18 1.12 1.03 1.10
    Content/% 13 87 100 100 100
    Ge11.5As24
    Se32.25S32.25
    BE/eV 54.9 54.5 162.4 162.1 43.0 31.4
    FWHM/ eV 1.09 1.11 1.21 1.23 1.15 1.04
    Content/% 11 89 6 94 100 100
    Ge11.5As24
    Se16.125S48.375
    BE/eV 55.0 54.6 162.3 162.0 42.9 31.2
    FWHM/ eV 1.11 1.14 1.25 1.11 1.11 1.14
    Content/% 8 92 12 88 100 100
    Ge11.5As24S64.5 BE/eV 162.3 162.1 42.8 31.3
    FWHM/ eV 1.21 1.12 1.03 1.09
    Content/% 16 84 100 100
    下载: 导出CSV
  • [1]

    Wang R P 2014 Amorphous Chalcogenides: Advances and Applications (Singapore: Pan Stanford Publisher) pp97−118

    [2]

    Tanaka K, Shimakawa K 2011 Amorphous Chalcogenide Semiconductors and Related Materials (New York: Springer International Publishing) pp118−122

    [3]

    Niu L, Chen Y M, Shen X, Xu T F 2020 Chin. Phys. B 29 087803Google Scholar

    [4]

    许思维, 王丽, 沈祥 2015 物理学报 64 223302Google Scholar

    Xu S W, Wang L, Shen X 2015 Acta Phys. Sin. 64 223302Google Scholar

    [5]

    Xu S W, Wang R P, Yang Z Y, Wang L, Luther-Davies B 2016 Chin. Phys. B 25 057105Google Scholar

    [6]

    乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216Google Scholar

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta Phys. Sin. 64 154216Google Scholar

    [7]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141Google Scholar

    [8]

    Ren J, Lu X S, Lin C G, Jain R K 2020 Opt. Express 28 21522Google Scholar

    [9]

    Wang R P, Bulla D, Smith A, Wang T, Luther-Davies B 2011 J. Appl. Phys. 109 023517Google Scholar

    [10]

    Lin H T, Song Y, Huang Y Z, Kita D, Deckoff-Jones S, Wang K Q, Li L, Li J Y, Zheng H Y, Luo Z Q, Wang H Z, Novak S, Yadav A, Huang C C, Shiue R J, Englund D, Gu T, Hewak D, Richardson K, Kong J, Hu J J 2017 Nat. Photonics 11 798Google Scholar

    [11]

    Wang L L, Zeng J H, Zhu L, Yang D D, Zhang Q, Zhang P Q, Wang X S, Dai S X 2018 Appl. Opt. 57 10044Google Scholar

    [12]

    田康振, 胡永胜, 任和, 祁思胜, 杨安平, 冯宪, 杨志勇 2021 物理学报 70 047801Google Scholar

    Tian K Z, Hu Y S, Ren H, Qi S S, Yang A P, Feng X, Yang Z Y 2021 Acta Phys. Sin. 70 047801Google Scholar

    [13]

    Choi D Y, Madden S, Rode A, Wang R P, Luther-Davies B 2007 Appl. Phys. Lett. 91 011115Google Scholar

    [14]

    Wang T, Gai X, Wei W H, Wang R P, Yang Z Y, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011Google Scholar

    [15]

    Wang T, Gulbiten O, Wang R P, Yang Z Y, Smith A, Luther-Davies B, Lucas P 2014 J. Phys. Chem. B 118 1436Google Scholar

    [16]

    Wang R P, Yan K L, Yang Z Y, Luther-Davies B 2015 J. Non-Cryst. Solids 427 16Google Scholar

    [17]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 J. Non-Cryst. Solids 226 85Google Scholar

    [18]

    Wang R P, Smith A, Luther-Davies B, Kokkonen H, Jackson I 2009 J. Appl. Phys. 105 056109Google Scholar

    [19]

    Cernosek Z, Cernoskova E, Todorov R, Holubova J 2020 J. Solid State Chem. 291 121599Google Scholar

    [20]

    Wang R P, Smith A, Prasad A, Choi D Y, Luther-Davies B 2009 J. Appl. Phys. 106 043520Google Scholar

    [21]

    Yang G, Bureau B, Rouxel T, Gueguen Y, Gulbiten O, Roiland C, Soignard E, Yarger J L, Troles J, Sangleboeuf J C, Lucas P 2010 Phys. Rev. B 82 195206Google Scholar

    [22]

    徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华 2016 物理学报 65 154207Google Scholar

    Xu H, Peng X F, Dai S X, Xu D, Zhang P Q, Xu Y S, Li X, Nie Q H 2016 Acta Phys. Sin. 65 154207Google Scholar

    [23]

    Jackson K, Briley A, Grossman S, Porezag D V, Pederson M R 1999 Phys. Rev. B 60 14985Google Scholar

    [24]

    Mei Q, Saienga J, Schrooten J, Meyer B, Martin S W 2003 J. Non-Cryst. Solids 324 264Google Scholar

    [25]

    Zhang Y, Xu Y S, You C Y, Xu D, Tang J Z, Zhang P Q, Dai S X 2017 Opt. Express 25 8886Google Scholar

    [26]

    Frumarova B, Nemec P, Frumar M, Oswald J, Vlcek M 1999 J. Non-Cryst. Solids 256-257 266Google Scholar

    [27]

    Kotsalas I P, Papadimitriou D, Raptis C, Vlcek M, Frumar M 1998 Journal of Non-Cryst. Solids 226 85

    [28]

    Rana A, Singh B P, Sharma R 2019 J. Non-Cryst. Solids 523 119597Google Scholar

    [29]

    Musgraves J D, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61Google Scholar

    [30]

    Nefedov V I 1988 X-Ray Photoelectron Spectroscopy of Solid Surfaces (Boca Raton: CRC Press) pp97−128

    [31]

    Wang R P, Choi D Y, Rode A V, Madden S J, Luther-Davies B 2007 J. Appl. Phys. 101 113517Google Scholar

    [32]

    Xu S W, Wang R P, Luther-Davies B, Kovalskiy A, Miller A C, Jain H 2014 J. Appl. Phys. 115 083518Google Scholar

    [33]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp431−488

    [34]

    Kovalskiy A, Jain H, Miller A C, Golovchak R Y, Shpotyuk O I 2006 J. Phys. Chem. B 110 22930Google Scholar

    [35]

    Opletal G, Drumm D W, Wang R P, Russo S P 2014 J. Phys. Chem. A 118 4790Google Scholar

    [36]

    Li Q L, Wang R P, Xu F, Wang X S, Yang Z Y, Gai X 2020 Opt. Mater. Express 10 1413Google Scholar

    [37]

    Lu X S, Li J H, Yang L, Zhang R N, Zhang Y D, Ren J, Galca A C, Secu M, Farrell G, Wang P F 2020 J. Non-Cryst. Solids 528 119757Google Scholar

  • [1] 夏克伦, 管永年, 顾杰荣, 贾光, 仵苗苗, 沈祥, 刘自军. Ge20Se80–xTex 玻璃网络结构演变及理论带隙-玻璃性能评价. 物理学报, 2024, 73(14): 146303. doi: 10.7498/aps.73.20240637
    [2] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构. 物理学报, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质. 物理学报, 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [6] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [7] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [8] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [9] 许思维, 王丽, 沈祥. GexSb20Se80-x玻璃的拉曼光谱和X射线光电子能谱. 物理学报, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究. 物理学报, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [11] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [12] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [13] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [14] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [15] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [16] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响. 物理学报, 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [17] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [20] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
计量
  • 文章访问数:  4861
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-20
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回