搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态散斑照明的宽场荧光显微技术理论研究

尹君 王少飞 张俊杰 谢佳谌 陈宏宇 贾源 胡徐锦 于凌尧

引用本文:
Citation:

基于动态散斑照明的宽场荧光显微技术理论研究

尹君, 王少飞, 张俊杰, 谢佳谌, 陈宏宇, 贾源, 胡徐锦, 于凌尧

Theoretical study of wide-field fluorescence microscopy based on dynamic speckle illumination

Yin Jun, Wang Shao-Fei, Zhang Jun-Jie, Xie Jia-Chen, Chen Hong-Yu, Jia Yuan, Hu Xu-Jin, Yu Ling-Yao
PDF
HTML
导出引用
  • 为获取生物组织和活体细胞内部精细结构, 要求显微成像技术具备层析成像能力. 基于动态散斑照明的宽场荧光显微技术利用动态变化的散斑图案全场照明待测样品, 通过提取焦平面内变化剧烈的荧光信号, 获得三维结构的荧光层析图像. 本文通过理论分析和模拟仿真, 研究了这一荧光显微技术获取荧光层析图像的过程. 模拟仿真了影响荧光层析图像成像质量的主要因素, CCD记录的原始荧光图像数量和散射体颗粒度与成像质量的关系. 模拟仿真结果表明, 荧光层析图像的成像质量随原始荧光图像数量的增加先提高后趋向饱和, 随散射体颗粒度的增大先增大后降低. 综合考虑成像质量和成像时间等因素, 当用于提取荧光层析图像的原始荧光图像的数量为60幅, 散射体颗粒度为1000左右时, 可获得图像对比度高于85%的高空间分辨率荧光层析图像. 理论分析和模拟仿真研究工作为基于动态散斑照明的宽场荧光显微技术的系统结构设计、实现和优化提供了理论基础和指导.
    In order to obtain the internal fine structure of biological tissues and living cells, the microscopic imaging technology is required to be capable of microscopy. In the wide-field fluorescence microscopy with dynamic speckle illumination, a series of dynamically changing speckle patterns are used to illuminate a biological sample in the whole field. The fluorescence sectioning images of sample’s three-dimensional structural are obtained by extracting intensely changing fluorescence signals in the focal plane. In this paper, the process of obtaining fluorescence sectioning images by the fluorescence microscopy is studied by theoretical analysis and simulation. Two main factors affecting the imaging quality of fluorescence sectioning image are analyzed, which are the number of original fluorescence images recorded by CCD and granularity of diffuser. The simulation results indicates that the imaging quality of fluorescence sectioning images first increases and then tends to saturation with the number of original fluorescence images increasing. It first increases and then decreases with the graininess of diffusers increasing. Considering the imaging quality and imaging time, when the number of original fluorescence images is 60 that is used to extract fluorescence sectioning images, and the granularity of diffuser is about 1000, the high spatial resolution fluorescence sectioning images with contrast higher than 85% can be obtained. Theoretical analysis and simulation research provide a theoretical basis and guidance for designing the system structure, implementing and optimizing the wide-field fluorescence microscopy with dynamic speckle illumination.
      通信作者: 于凌尧, lingyaoyu01@163.com
    • 基金项目: 国家自然科学基金地区科学基金(批准号: 61965008)和广西自动检测技术与仪器重点实验室基金(批准号: YQ21109)资助的课题
      Corresponding author: Yu Ling-Yao, lingyaoyu01@163.com
    • Funds: Project supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 61965008) and the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, China (Grant No. YQ21109)
    [1]

    Minsky M US Patent 3013467 [1957-12-19]

    [2]

    Minsky M 1988 Scanning 10 128Google Scholar

    [3]

    Kohen E, Hirschberg J G 1989 Cell Structure and Function by Microspectrofluorometry (San Diego, CA: Academic) p13

    [4]

    Tsien R Y, Miyawaki A 1998 Science 280 1954Google Scholar

    [5]

    Wilson T, Sheppard C 1984 Theory and Practice of Scanning Optical Microscopy (Orlando, FL: Academic) p47

    [6]

    Pawley J B 1995 Handbook of Biological Confocal Microscopy (New York: Plenum) p9

    [7]

    Ikagawa H, Yoneda M, Iwaki M, Isogai Z, Tsujii K, Yamazaki R, Kamiya T, Zako M 2005 Invest. Ophthalmol. Vis. Sci. 46 2531Google Scholar

    [8]

    Szeto H H, Schiller P W, Zhao K, Luo G X 2004 FASEB J. 19 118

    [9]

    Mason W T 1999 Fluorescent and Luminescent Probes for Biological Activity (San Diego, CA: Academic) p99

    [10]

    Somekh M G, See C W, J Goh 2000 Opt. Comm. 174 75Google Scholar

    [11]

    Ventalon C, Mertz J 2005 Opt. Lett. 30 3350Google Scholar

    [12]

    Ventalon C, Mertz J 2006 Opt. Express 14 7198Google Scholar

    [13]

    林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨 2008 物理学报 57 7641Google Scholar

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641Google Scholar

    [14]

    Wilson T, Juskaitis R, Neil M A A, Kozubek M 1996 Opt. Lett. 21 1879Google Scholar

  • 图 1  不同半径的两个小球样品的焦平面荧光图像 R (a), 10R (b) 和离焦荧光图像 R (c), 10R (d)

    Fig. 1.  Fluorescence images of focal (a), (b) and defocus (c), (d) planes of two small spherical samples with radii of R and 10R respectively.

    图 2  激光光束通过颗粒度分别为100 (a), 1000 (b)和3000 (c)的散射体形成的照明散斑图案

    Fig. 2.  Illumination speckle patterns are formed when a laser beam passes through diffusers with different granularity of 100 (a), 1000 (b) and 3000 (c), respectively.

    图 3  颗粒度为1000时, 半径为R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度(d)—(f) (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200

    Fig. 3.  The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with the granularity of diffuser being 1000: (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200.

    图 4  颗粒度为500时, 半径为10R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度(d)—(f)  (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200

    Fig. 4.  The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of 10R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with the granularity of diffuser being 500: (a), (d) N = 20; (b), (e) N = 60; (c), (f) N = 200.

    图 5  不同颗粒度条件下, 层析图像荧光信号归一化强度平均值与原始荧光图像数量之间的关系 (a)小球样品; (b)大球样品

    Fig. 5.  When the granularities of diffusers are different, the relationships between the average values of the normalized intensity of the fluorescence signals of sectioning images and the numbers of the original fluorescence images: (a) Small ball; (b) large ball.

    图 6  CCD记录120幅原始荧光图像时, 半径为R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度 (d)—(f) (a), (d) G =100; (b), (e) G =1000; (c), (f) G = 3000

    Fig. 6.  The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with 120 original fluorescence images being recorded by CCD: (a), (d) G =100; (b), (e) G =1000; (c), (f) G = 3000.

    图 7  CCD记录120幅原始荧光图像时, 半径为10R的小球样品荧光层析图像 (a)—(c)及中心位置处荧光信号归一化强度 (d)—(f) (a), (d) G =20; (b), (e) G =1000; (c), (f) G = 3000

    Fig. 7.  When 120 original fluorescence images are recorded by CCD and the different granularity of diffuser, G=20, 1000, 3000, The fluorescence sectioning images (a)–(c) of a small spherical sample with a radius of 10R and the normalized intensity (d)–(f) of the fluorescence signal at the center position with 120 original fluorescence images being recorded by CCD: (a), (d) G =20; (b), (e) G =1000; (c), (f) G = 3000.

    图 8  CCD记录不同原始荧光图像数量时, 层析图像荧光信号归一化强度平均值与散斑颗粒度之间的关系 (a)小球样品; (b)大球样品

    Fig. 8.  The relationships between the average values of the normalized intensity of the fluorescence signals of sectioning images and the diffuser granularities with different numbers of the original fluorescence images being recorded by CCD: (a) Small ball; (b) large ball.

  • [1]

    Minsky M US Patent 3013467 [1957-12-19]

    [2]

    Minsky M 1988 Scanning 10 128Google Scholar

    [3]

    Kohen E, Hirschberg J G 1989 Cell Structure and Function by Microspectrofluorometry (San Diego, CA: Academic) p13

    [4]

    Tsien R Y, Miyawaki A 1998 Science 280 1954Google Scholar

    [5]

    Wilson T, Sheppard C 1984 Theory and Practice of Scanning Optical Microscopy (Orlando, FL: Academic) p47

    [6]

    Pawley J B 1995 Handbook of Biological Confocal Microscopy (New York: Plenum) p9

    [7]

    Ikagawa H, Yoneda M, Iwaki M, Isogai Z, Tsujii K, Yamazaki R, Kamiya T, Zako M 2005 Invest. Ophthalmol. Vis. Sci. 46 2531Google Scholar

    [8]

    Szeto H H, Schiller P W, Zhao K, Luo G X 2004 FASEB J. 19 118

    [9]

    Mason W T 1999 Fluorescent and Luminescent Probes for Biological Activity (San Diego, CA: Academic) p99

    [10]

    Somekh M G, See C W, J Goh 2000 Opt. Comm. 174 75Google Scholar

    [11]

    Ventalon C, Mertz J 2005 Opt. Lett. 30 3350Google Scholar

    [12]

    Ventalon C, Mertz J 2006 Opt. Express 14 7198Google Scholar

    [13]

    林浩铭, 邵永红, 屈军乐, 尹君, 陈思平, 牛憨笨 2008 物理学报 57 7641Google Scholar

    Lin H M, Shao Y H, Qu J L, Yin J, Chen S P, Niu H B 2008 Acta Phys. Sin. 57 7641Google Scholar

    [14]

    Wilson T, Juskaitis R, Neil M A A, Kozubek M 1996 Opt. Lett. 21 1879Google Scholar

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 73(2): 024204. doi: 10.7498/aps.73.20231235
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [4] 邢阳光, 彭吉龙, 段紫雯, 闫雷, 李林, 刘越. 太阳极紫外He II 30.4 nm谱线层析成像及其光谱数据反演. 物理学报, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [5] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [6] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [7] 杨春林. 等离子体中散斑光场的传输特性. 物理学报, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [8] 郭各朴, 宿慧丹, 丁鹤平, 马青玉. 基于电阻抗层析成像的高强度聚焦超声温度监测技术. 物理学报, 2017, 66(16): 164301. doi: 10.7498/aps.66.164301
    [9] 陈明徕, 罗秀娟, 张羽, 兰富洋, 刘辉, 曹蓓, 夏爱利. 基于全相位谱分析的剪切光束成像目标重构. 物理学报, 2017, 66(2): 024203. doi: 10.7498/aps.66.024203
    [10] 祝晓松, 张庆斌, 兰鹏飞, 陆培祥. 分子轨道高时空分辨成像. 物理学报, 2016, 65(22): 224207. doi: 10.7498/aps.65.224207
    [11] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [12] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [13] 张志刚, 刘丰瑞, 张青川, 程腾, 伍小平. 空间散斑场捕获大量吸光性颗粒及其红外显微观测. 物理学报, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [14] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [15] 文侨, 王凯歌, 邵永红, 屈军乐, 牛憨笨. 基于偏振滤波图像增强和动态散斑照明的宽场荧光层析显微镜. 物理学报, 2013, 62(3): 034203. doi: 10.7498/aps.62.034203
    [16] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [17] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [18] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [19] 宋洪胜, 程传福, 刘曼, 滕树云, 张宁玉. 散斑场相位涡旋及其传播特性的实验研究. 物理学报, 2009, 58(6): 3887-3896. doi: 10.7498/aps.58.3887
    [20] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
计量
  • 文章访问数:  5320
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-07-27
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回