搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MAX及其衍生MXene相碳化物的热电性能及展望

刘超 杨岳洋 南策文 林元华

引用本文:
Citation:

MAX及其衍生MXene相碳化物的热电性能及展望

刘超, 杨岳洋, 南策文, 林元华

Thermoelectric properties and prospects of MAX phases and derived MXene phases

Liu Chao, Yang Yue-Yang, Nan Ce-Wen, Lin Yuan-Hua
PDF
HTML
导出引用
  • 热电材料无需提供其他能量就能直接实现热能和电能的相互转换, 是一种新型能源材料, 然而当前热电材料的发展现状严重制约了热电器件的工程化应用, 提高现有热电材料的热电性能或研发具有优异性能的新型热电材料是热电领域永恒的研究主题. 近年来, MAX及其衍生MXene相材料由于特有的结构性能而逐渐进入了科研工作者的视线, MAX 相的晶体结构由Mn+1Xn 结构单元与A 元素单原子面交替堆垛排列而成, MAXA层原子被刻蚀之后可以制备得到对应的衍生二维MXene相, MAX及其衍生MXene相陶瓷兼具金属和陶瓷的特性, 具有良好的导热导电性能, 有望成为一种非常有前景的热电材料. 本文简要综述了近年来MAX相及其衍生MXene相材料的制备技术和热电性能的发展现状, 并针对MAX及其衍生MXene相材料的特性提出了一些改善热电性能的可行性方案, 据此展望了MAX相以及MXene材料在未来的发展方向和前景.
    Thermoelectric materials, a kind of new energy material, can directly convert heat energy into electric energy, and vice versa, without needing any other energy conversion. However, the present development status of thermoelectric materials severely restricts their engineering applications in thermoelectric devices. Improving the thermoelectric performances of existing thermoelectric materials and exploring new thermoelectric materials with excellent performance are eternal research topics in thermoelectricity field. In recent years, the MAX phases and their derived MXene phases have gradually received the attention of researchers due to their unique microstructures and properties. The crystal structure of MAX phases is comprised of Mn+1Xn structural units and the single atomic plane of A stacked alternately. The two-dimensional MXene phase derived can be prepared after the atoms in the A-layer of MAX have been etched. The MAX phases and their derived MXene phases have both metal feature and ceramic feature, and also have good thermal conductivity and electric conductivity, and they are anticipated to be the promising thermoelectric materials. In this paper, the present development status of the preparation technology and the thermoelectric properties of MAX phases and MXene are reviewed. Finally, some feasible schemes to improve the thermoelectric properties of MAX and its derived MXene phase materials are proposed, and the development direction and prospect of MAX phases and MXene are prospected as well.
      通信作者: 林元华, linyh@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51729201, 51788104, 51672155) 和国家重点研发计划(批准号: 2016YFA0201003)资助的课题
      Corresponding author: Lin Yuan-Hua, linyh@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51729201, 51788104, 51672155) and the State Key R&D Program of China (Grant No. 2016YFA0201003).
    [1]

    Doman LE A V 2016 International Energy Outlook 2016

    [2]

    李宜 2019 博士学位论文 (济南: 山东大学)

    Yi L 2019 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [3]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [4]

    Liu W, Hu J, Zhang S, Deng M, Han C G, Liu Y 2017 Mater. Today Phys. 1 50Google Scholar

    [5]

    Enescu D, Virjoghe E O 2014 Renewable Sustainable Energy Rev. 38 903Google Scholar

    [6]

    Zhang Y, Heo Y J, Park M, Park S J Polymers 2019 11 167

    [7]

    Bell L E 2008 Science 321 1457Google Scholar

    [8]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [9]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201Google Scholar

    [10]

    W B M 2013 MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Berlin: Wiley VCH) pp13–64

    [11]

    Ching W Y, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292Google Scholar

    [12]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [13]

    郑丽雅, 周延春, 冯志海 2013 宇航材料工艺 43 1

    Zheng L Y, Zhou Y C, Feng Z H 2013 Aero. Mater. Tech. 2013 43 1

    [14]

    Ying G, He X, Li M, Du S, Han W, He F 2011 J. Alloys Compd. 509 8022Google Scholar

    [15]

    Hong X, Mei B, Zhu J, Zhou W 2004 J. Mater. Sci. 39 1589Google Scholar

    [16]

    Barsoum M W, Brodkin D, El-Raghy T 1997 Scr. Mater. 36 535Google Scholar

    [17]

    Cetinkaya S, Eroglu S 2012 Ceram. Int. 38 6445Google Scholar

    [18]

    Tian W, Wang P, Zhang G, Kan Y, Li Y, Yan D 2006 Scr. Mater. 54 841Google Scholar

    [19]

    Barsoum M W, El-Raghy T, Ali M 2000 Metall. Mater. Trans. A 31 1857Google Scholar

    [20]

    Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G 2020 Ceram. Int. 46 6934Google Scholar

    [21]

    Champagne A, Battaglia J L, Ouisse T, Ricci F, Kusiak A, Pradere C, Natu V, Dewandre A, Verstraete M J, Barsoum M W, Charlier J C 2020 J. Phys. Chem. C 124 24017Google Scholar

    [22]

    Palmquist J P, Jansson U, Seppänen T, Persson P O Å, Birch J, Hultman L, Isberg P 2002 Appl. Phys. Lett. 81 835Google Scholar

    [23]

    Palmquist J P, Li S, Persson P O Å, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L, Jansson U 2004 Phys. Rev. B 70 165401Google Scholar

    [24]

    Racault C, Langlais F, Bernard C 1994 J. Mater. Sci. 29 5023Google Scholar

    [25]

    Fakih H, Jacques S, Dezellus O, Berthet M P, Bosselet F, Sacerdote-Peronnet M, Viala J C 2008 J. Phase Equilib. Diffus. 29 239Google Scholar

    [26]

    Medkour Y, Roumili A, Maouche D, Louail L, Haddadi K 2009 Eur. Phys. J. B 68 193Google Scholar

    [27]

    Mauchamp V, Yu W, Gence L, Piraux L, Cabioc'h T, Gauthier V, Eklund P, Dubois S 2013 Phys. Rev. B 87 235105Google Scholar

    [28]

    Ouisse T, Shi L, Piot B A, Hackens B, Mauchamp V, Chaussende D 2015 Phys. Rev. B 92 045133Google Scholar

    [29]

    Flatten T, Matthes F, Petruhins A, Salikhov R, Wiedwald U, Farle M, Rosen J, Bürgler D E, Schneider C M 2019 Appl. Phys. Lett. 115 094101Google Scholar

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem. 32 213Google Scholar

    [31]

    Schneider J M, Sun Z, Mertens R, Uestel F, Ahuja R 2004 Solid State Commun. 130 445Google Scholar

    [32]

    Drulis M K, Drulis H, Gupta S, Barsoum M W, El-Raghy T 2006 J. Appl. Phys. 99 093502Google Scholar

    [33]

    Bai Y L, He X D, Zhu C C, Chen G Q 2012 J. Am. Ceram. Soc. 95 358Google Scholar

    [34]

    Vovk R V, Khadzhai G Y, Prikhna T A, Gevorkyan E S, Kislitsa M V, Soloviev A L, Goulatis I L, Chroneos A 2018 J. Mater. Sci. -Mater. Electron. 29 11478Google Scholar

    [35]

    Hu C, Sakka Y, Tanaka H, Nishimura T, Grasso S 2011 J. Am. Ceram. Soc. 94 410Google Scholar

    [36]

    Cai P, He Q, Yang L, Huang Z, Liu X, Yin J, Huang Y 2019 Ceram. Int. 45 9799Google Scholar

    [37]

    Yoo H I, Barsoum M W, El-Raghy T 2000 Nature 407 581

    [38]

    Finkel P, Seaman B, Harrell K, Palma J, Hettinger J D, Lofland S E, Ganguly A, Barsoum M W, Sun Z, Li S, Ahuja R 2004 Phys. Rev. B 70 085104Google Scholar

    [39]

    Chen K, Chen Y, Zhang J, Song Y, Zhou X, Li M, Fan X, Zhou J, Huang Q 2021 Ceram. Int. 47 7582Google Scholar

    [40]

    Sonntag J 2010 J. Phys. Condens. Matter 22 235501Google Scholar

    [41]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [42]

    Zhang F, Zhang Z, Wang H, Chan C H, Chan N Y, Chen X X, Dai J Y 2017 Phys. Rev. Mater. 1 034002Google Scholar

    [43]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [44]

    Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q 2016 Angew. Chem. Int. Ed. 55 5008Google Scholar

    [45]

    Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q 2017 ACS Nano 11 3841Google Scholar

    [46]

    Zhou J, Zha X H, Yildizhan M, Eklund P, Xue J M, Liao M Y, Persson P O A, Du S Y, Huang Q 2019 ACS Nano 13 1195Google Scholar

    [47]

    Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W 2013 J. Am. Chem. Soc. 135 15966Google Scholar

    [48]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [49]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [50]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Des. 114 161Google Scholar

    [51]

    Zhang B, Zhu J F, Shi P, Wu W L, Wang F 2019 Ceram. Int. 45 8395Google Scholar

    [52]

    Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X 2019 ACS Mater. Lett. 1 628Google Scholar

    [53]

    Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y 2014 Angew. Chem. Int. Ed. 53 4877Google Scholar

    [54]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. 57 15491Google Scholar

    [55]

    Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J 2017 J. Mater. Chem. A 5 21663Google Scholar

    [57]

    Song M, Pang S Y, Guo F, Wong M C, Hao J 2020 Adv. Sci. 7 2001546Google Scholar

    [58]

    Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y 2020 Adv. Energy Mater. 10 2001394Google Scholar

    [59]

    Chertopalov S, Mochalin V N 2018 ACS Nano 12 6109Google Scholar

    [60]

    Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W 2020 Chem. 6 616Google Scholar

    [61]

    Mei J, Ayoko G A, Hu C F, Sun Z Q 2020 Chem. Eng. J. 395 125111Google Scholar

    [62]

    Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O A, Du S Y, Chai Z F, Huang Z R, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [63]

    Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X-H, Du S, Rozier P, Chai Z, Raymundo-Piñero E, Taberna P-L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [64]

    Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [65]

    Shi H, Zhang P, Liu Z, Park S, Lohe M R, Wu Y, Shaygan Nia A, Yang S, Feng X 2021 Angew. Chem. Int. Ed. 60 8689Google Scholar

    [66]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [67]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [68]

    Liu P, Ding W J, Liu J, Shen L L, Jiang F X, Liu P P, Zhu Z Y, Zhang G, Liu C C, Xu J K 2020 J. Alloys Compd. 829 154634Google Scholar

    [69]

    Ding W, Liu P, Bai Z, Wang Y, Liu G, Jiang Q, Jiang F, Liu P, Liu C, Xu J 2020 Adv. Mater. Interfaces 7 2001340Google Scholar

    [70]

    Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J Y 2020 ACS Appl. Mater. Interfaces 12 13013Google Scholar

    [71]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [72]

    Bafekry A, Nguyen C V, Stampfl C, Akgenc B, Ghergherehchi M 2020 Phys. Status Solidi B 257 2000343Google Scholar

    [73]

    Bafekry A, Akgenc B, Ghergherehchi M, Peeters F M 2020 J. Phys. Condens. Matter 32 355701Google Scholar

    [74]

    Zhang H, Hu T, Wang X, Zhou Y 2020 J. Mater. Sci. Technol. 38 205Google Scholar

    [75]

    Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L, Barsoum M W, Persson P O Å, Rosen J 2017 Nat. Commun. 8 14949Google Scholar

    [76]

    Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thörnberg J, Tao Q Z, Li S X, Intikhab S, Snyder J, Barsoum M W, Yildizhan M, Palisaitis J, Hultman L, Persson P, Rosen J 2018 Adv. Mater. 30 1706409Google Scholar

    [77]

    Meshkian R, Lind H, Halim J, El Ghazaly A, Thörnberg J, Tao Q, Dahlqvist M, Palisaitis J, Persson P O Å, Rosen J 2019 ACS Appl. Nano Mater. 2 6209Google Scholar

    [78]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [79]

    Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, Randall C A 2018 Adv. Mater. 30 1801846Google Scholar

    [80]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [81]

    Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841Google Scholar

    [82]

    Zha X H, Luo K, Li Q, Huang Q, He J, Wen X, Du S 2015 EPL 111 26007Google Scholar

    [83]

    Zha X H, Zhou J, Zhou Y H, Huang Q, He J, Francisco J S, Luo K, Du S Y 2016 Nanoscale 8 6110Google Scholar

    [84]

    Luo K, Zha X H, Zhou Y H, Guo Z S, Lin C T, Huang Q, Zhou S H, Zhang R F, Du S Y 2018 RSC Adv. 8 22452Google Scholar

    [85]

    Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z 2015 Nanoscale 7 16020Google Scholar

    [86]

    Xie Y, Kent P R C 2013 Phys. Rev. B 87 235441Google Scholar

    [87]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 1Google Scholar

    [88]

    Xu X, Ge X, Liu X, Li L, Fu K, Dong Y, Meng F, Si R, Zhang M 2020 Ceram. Int. 46 13377Google Scholar

    [89]

    Miranda A, Halim J, Barsoum M W, Lorke A 2016 Appl. Phys. Lett. 108 033102Google Scholar

    [90]

    Jing H, Yeo H, Lyu B, Ryou J, Choi S, Park J H, Lee B H, Kim Y H, Lee S 2021 ACS Nano 15 1388Google Scholar

    [91]

    Gao L G, Wang N, Cao J M, Li Y, Ma T L 2020 Surf. Interfaces 20 100604Google Scholar

    [92]

    Mostafaei A, Faizabadi E, Semiromi E H 2019 Physica E 114 113559Google Scholar

    [93]

    Zhang Y G, Sa B S, Zhou J, Sun Z M 2021 Comput. Mater. Sci. 186 110013Google Scholar

    [94]

    Li L H 2016 Comput. Mater. Sci. 124 8Google Scholar

    [95]

    Si C, Jin K H, Zhou J, Sun Z, Liu F 2016 Nano Lett. 16 6584Google Scholar

    [96]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [97]

    Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y 2016 Nanoscale Horiz. 1 227Google Scholar

    [98]

    Je M, Lee Y, Chung Y C 2016 Thin Solid Films 619 131Google Scholar

    [99]

    Bai X, Zha X H, Qiao Y, Qiu N, Zhang Y, Luo K, He J, Li Q, Huang Q, Francisco J S, Lin C T, Du S 2020 Nanoscale 12 3795Google Scholar

  • 图 1  热电材料的塞贝克效应和珀尔帖效应示意图[6]

    Fig. 1.  Schematic diagram of Seebeck effect and Peltier effect in thermoelectric materials[6].

    图 2  Mn+1AXn相的晶体结构[11]

    Fig. 2.  Crystal structures of MAX-phase compounds. Reprinted with permission from Ref. [11]. Copyright ©2016 John Wiley and Sons.

    图 3  Cr2AlC的组织和性能 (a)晶体结构; (b)热导率; (c)测量电阻率; (d)预测面外电阻率[21]

    Fig. 3.  Microtructure and properties of Cr2AlC: (a) Atomic structure; (b) thermal conductivity, compared to the values found in the literature; (c) measurements resistivity; (d) predicted out-of-plane resistivity. Plane reprinted with permission from Ref. [21]. Copyright © 2020 American Chemical Society.

    图 4  Ti2AlC的组织和性能 (a)蚀刻表面; (b)电导率和电阻率; (c)热导率、热容和热扩散率; (d)总热导率、电子热导率和声子热导率[33]

    Fig. 4.  Microtructure and properties of Cr2AlC: (a) Etched surface; (b) electrical conductivity and resistivity; (c) thermal conductivity, heat capacity, and thermal diffusivity; (d) total, electronic and phonon thermal conductivity. Plane reprinted with permission from Ref. [33]. Copyright © 2011 John Wiley and Sons.

    图 5  Ti3AlC2的热电性能 (a)电阻率; (b)热导率[34]

    Fig. 5.  Thermoelectric properties of Ti3AlC2: (a) Electrical resistivity; (b) thermal conductivity. Plane reprinted with permission from Ref. [34]. Copyright © 2011 John Wiley and Sons.

    图 6  MXene的制备方法 (a) HF刻蚀法[12]; (b) LiF+HCl刻蚀法[49]; (c) Li扩张法[52]; (d)电化学刻蚀法[57]; (e)路易斯酸刻蚀法[62]; (f)碘刻蚀法[65]

    Fig. 6.  Preparation methods of MXene: (a) Etching method via HF[12]; (b) etching method via LiF+HCl[49]; (c) lithiation expansion[52]; (d) electrochemical etching[57]; (e) Lewis acid etching[62]; (f) iodine‐assisted etching[65]. Panel (a) reprinted from Ref. [12], Copyright 2011 John Wiley and Sons. Panel (b) reprinted from Ref. [49] with the permission of John Wiley and Sons. Panel (c) reprinted with permission from Ref. [52]. Copyright © 2019 American Chemical Society. Panel (e) reprinted with permission from Ref. [62], Copyright © 2019 American Chemical Society. Panel (f) reprinted from Ref. [65] with the permission of John Wiley and Sons

    图 7  MXene的界面工程及热电性能 (a)−(c) Ti3C2Tx/SWCNTs (M/S), Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM)和 SWCNTs-Ti3C2Tx-SWCNTs (SMS) 多层膜及能量过滤效应示意图[69]; (d)−(f) 3种结构下对应的功率因子随SWCNTs百分比的变化图[69]; (g) MXene和PEDOT复合后形成内建电场示意图; MXene/PEDOT:PSS中不同MXene质量分数下的(h)塞贝克系数和电导率以及(i)功率因子[70]

    Fig. 7.  Interface engineering and thermoelectric properties of MXene. The schematic energy diagrams of (a) Ti3C2Tx/SWCNTs (M/S), (b) Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM), and (c) SWCNTs-Ti3C2Tx-SWCNTs (SMS) showing the different energy-filtering effects[69]-. Power factor of (d) Ti3C2Tx/SWCNTs (M/S), (e) Ti3C2Tx-SWCNTs-Ti3C2Tx (MSM), and (f) SWCNTs-Ti3C2Tx-SWCNTs (SMS) films[69]. (g) Schematic diagrams for the interfacial effect between MXene and PEDOT[70]. (h) Seebeck coefficient and electrical conductivity and (i) power factor of MXene/PEDOT: PSS as a function of the MXene loading[70]. Panels (a)−(f) are reprinted from Ref. [69] with the permission of John Wiley and Sons. Panels (g)−(i) are adapted with permission from Ref. [70], Copyright © 2020 American Chemical Society.

    图 8  含有0.81% O空位的Ti2CO2在(a)单轴和(b)双轴应变下的电子能带结构; (c) Ti2CO2带隙随应力的变化[72]

    Fig. 8.  Electronic band structure of the O-vacacy Ti2CO2 structure (for 0.81% defect concentration) as a function of (a) uniaxial and (b) biaxial strain. (c) Variation of band gap with respect to strain. Reprinted from Ref. [72], Copyright © 2020 John Wiley and Sons

    图 9  MXene的缺陷工程 (a) Mo1.33C[75]; (b) W1.33C[76]

    Fig. 9.  Defect engineering of MXene: (a) Mo1.33C; (b) W1.33C. Panel (a) is reprinted with permission from Ref. [75], Springer Nature. Panel (b) is adapted from Ref. [76], Copyright © 2016 John Wiley and Sons.

    图 10  MXene的合金化工程及热电性能 Mo基MXene的 (a)电导率、(b)塞贝克系数和(c)功率因子随温度变化图[78]; (d) Cr基MXene的理论晶格和电子热导率[67]; (e) Cr基MXene的理论ZT[67]; (f) TiMo基MXene的理论晶格和电子热导率[66]; (g) TiMo基MXene的理论ZT[66]

    Fig. 10.  Alloying engineering and thermoelectric properties of MXene. Temperature dependent thermoelectric properties of Mo-based MXene papers during the first thermal cycle: (a) Electrical conductivity; (b) Seebeck coefficient; (c) thermoelectric power factor[78]. (d) Lattice and electron thermal conductivities of Cr-based MXene [67]. (e) Thermoelectric figure of merit (ZT) of Cr-based MXene [67]. (f) Temperature-dependent electronic and lattice thermal conductivities of TiMo-based MXene [66]. (g) Thermoelectric figure of merit (ZT) effificiency for passivated TiMo-based MXene [66]. Panels (a) (c) are reprinted with permission from Ref. [78], Copyright © 2017 American Chemical Society. Panels (d), (e) are reprinted with permission from Ref. [67], Copyright © 2019 American Chemical Society. Panels (f), (g) are reprinted from Ref. [66] with permission from American Physical Society.

    图 11  MXene体系热电性能研究现状, 图中表示的是M位元素组成, 紫色代表理论具有一定的热电性能, 蓝色代表实验上成功制备的MXene相, 红色代表实际已经测得热电性能, 下划线代表具有潜在热电性能的体系

    Fig. 11.  Status of thermoelectric research of MXene system. Purple elements represent the constituent MXene have certain thermoelectric properties theoretically. Blue elements represent the constituent MXene synthesized experimentally. Red represents the thermoelectric properties of theses MXene being reported. The lanthanides on the underscore represent a class of MXene that may have thermoelectric properties.

    表 1  常见单相MAX的热电性能[14,34,36,37]

    Table 1.  Thermoelectric properties of single-phase MAX[14,34,36,37].

    物相种类测试温度
    /K
    热膨胀系数
    /(10-6 K-1)
    热导率
    /(W·m–1·K–1)
    电导率
    /(106 S·m–1)
    塞贝克系数/(μV·K–1)
    211相Cr2AlC47312.5017.51.8
    Ti2AlC300(8.10 ± 0.50)46.02.8
    Nb2AlC3008.1020.0
    Ti2SnC30010.00 ± 2.0014.0
    Ti2SC3008.4060..01.8–12.7
    312相Ti3AlC2859.00 ± 0.2026.50.22
    Ti3SiC23009.2046.0
    413相Nb4AlC33005.7513.5
    下载: 导出CSV

    表 2  MXene的带隙以及载流子迁移率[80-99]

    Table 2.  Bandgap and carrier mobility of MXene[80-99].

    MXene带隙/eV迁移率/(cm2·V–1·s–1)计算方法/实验值参考文献
    Sc2CF21.01000—5000 (e)
    200—500 (h)
    PBE[80-83]
    1.85HSE06[82]
    Sc2(OH)20.452000 (e)
    50—240 (h)
    PBE[80-83]
    0.845HSE06[82]
    Sc2CO21.8 PBE[80, 82]
    2.87HSE06[82]
    Sc3(CN)F21.18200—1300 (e)
    80—1000 (h)
    HSE06[84]
    Ti2CO20.17—0.26250—610 (e)
    20000—74000 (h)
    PBE[80-82, 85]
    0.970—150 (e)
    10000—40000 (h)
    HSE06[82, 86, 87]
    1.032—900 (e)
    4000—8000 (h)
    HSE06[88]
    Ti3C2Tx(T = O, OH, F) 0.7±0.2 (e)Experimental[89]
    1.06 (e)Experimental[90]
    0.66Experimental[91]
    Zr2CO20.88—0.97 PBE[80, 82]
    0.66PBE[81]
    1.70150 (e)
    1400—17500 (h)
    HSE06[82, 87]
    1.5814—376 (e)
    770—1950 (h)
    HSE06[88]
    1.34mBJ[92]
    Hf2CO20.8—1.0 PBE[80-82]
    1.6677—330 (e)
    1000—34000 (h)
    HSE06[82, 87]
    1.7824—700 (e)
    620—1300 (h)
    HSE06[88]
    (Zr0.5Hf0.5)2CO21.7445—1460 (e)
    1500—6200 (h)
    PBE[93]
    Mo2CF20.25—0.30 PBE[81, 82]
    0.86HSE06[82]
    Mo2CCl20.05PBE[81]
    Mo2C(OH)20.1PBE[81]
    W2CO20.0683HSE06[82]
    Mo2TiC2O20.04PBE[94, 95]
    0.10—0.17HSE06[94-96]
    Mo2TiC2(OH)20.05PBE[97]
    Cr2CF(OH)0.383PBE[98]
    Cr2CF21.105PBE[98]
    Cr2C(OH)20.396PBE GGA[98]
    Mo2ZrC2O20.066PBE[95]
    0.11—0.13HSE06[95, 96]
    Mo2HfC2O20.154PBE[95]
    0.20—0.24HSE06[95, 96]
    W2TiC2O20.29HSE06[96]
    W2ZrC2O20.28HSE06[96]
    W2HfC2O20.41HSE06[96]
    Lu2CF22.07200—1000 (e)
    14—6000 (h)
    HSE06[99]
    Lu2C(OH)21.28100000—200000 (e)
    12—14000 (h)
    HSE06[99]
    下载: 导出CSV
  • [1]

    Doman LE A V 2016 International Energy Outlook 2016

    [2]

    李宜 2019 博士学位论文 (济南: 山东大学)

    Yi L 2019 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [3]

    Chu S, Majumdar A 2012 Nature 488 294Google Scholar

    [4]

    Liu W, Hu J, Zhang S, Deng M, Han C G, Liu Y 2017 Mater. Today Phys. 1 50Google Scholar

    [5]

    Enescu D, Virjoghe E O 2014 Renewable Sustainable Energy Rev. 38 903Google Scholar

    [6]

    Zhang Y, Heo Y J, Park M, Park S J Polymers 2019 11 167

    [7]

    Bell L E 2008 Science 321 1457Google Scholar

    [8]

    Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2014 Nature 508 373Google Scholar

    [9]

    Barsoum M W 2000 Prog. Solid State Chem. 28 201Google Scholar

    [10]

    W B M 2013 MAX Phases: Properties of Machinable Ternary Carbides and Nitrides (Berlin: Wiley VCH) pp13–64

    [11]

    Ching W Y, Mo Y, Aryal S, Rulis P 2013 J. Am. Ceram. Soc. 96 2292Google Scholar

    [12]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [13]

    郑丽雅, 周延春, 冯志海 2013 宇航材料工艺 43 1

    Zheng L Y, Zhou Y C, Feng Z H 2013 Aero. Mater. Tech. 2013 43 1

    [14]

    Ying G, He X, Li M, Du S, Han W, He F 2011 J. Alloys Compd. 509 8022Google Scholar

    [15]

    Hong X, Mei B, Zhu J, Zhou W 2004 J. Mater. Sci. 39 1589Google Scholar

    [16]

    Barsoum M W, Brodkin D, El-Raghy T 1997 Scr. Mater. 36 535Google Scholar

    [17]

    Cetinkaya S, Eroglu S 2012 Ceram. Int. 38 6445Google Scholar

    [18]

    Tian W, Wang P, Zhang G, Kan Y, Li Y, Yan D 2006 Scr. Mater. 54 841Google Scholar

    [19]

    Barsoum M W, El-Raghy T, Ali M 2000 Metall. Mater. Trans. A 31 1857Google Scholar

    [20]

    Liu A, Yang Q, Ren X, Meng F, Gao L, Gao M, Yang Y, Ma T, Wu G 2020 Ceram. Int. 46 6934Google Scholar

    [21]

    Champagne A, Battaglia J L, Ouisse T, Ricci F, Kusiak A, Pradere C, Natu V, Dewandre A, Verstraete M J, Barsoum M W, Charlier J C 2020 J. Phys. Chem. C 124 24017Google Scholar

    [22]

    Palmquist J P, Jansson U, Seppänen T, Persson P O Å, Birch J, Hultman L, Isberg P 2002 Appl. Phys. Lett. 81 835Google Scholar

    [23]

    Palmquist J P, Li S, Persson P O Å, Emmerlich J, Wilhelmsson O, Högberg H, Katsnelson M I, Johansson B, Ahuja R, Eriksson O, Hultman L, Jansson U 2004 Phys. Rev. B 70 165401Google Scholar

    [24]

    Racault C, Langlais F, Bernard C 1994 J. Mater. Sci. 29 5023Google Scholar

    [25]

    Fakih H, Jacques S, Dezellus O, Berthet M P, Bosselet F, Sacerdote-Peronnet M, Viala J C 2008 J. Phase Equilib. Diffus. 29 239Google Scholar

    [26]

    Medkour Y, Roumili A, Maouche D, Louail L, Haddadi K 2009 Eur. Phys. J. B 68 193Google Scholar

    [27]

    Mauchamp V, Yu W, Gence L, Piraux L, Cabioc'h T, Gauthier V, Eklund P, Dubois S 2013 Phys. Rev. B 87 235105Google Scholar

    [28]

    Ouisse T, Shi L, Piot B A, Hackens B, Mauchamp V, Chaussende D 2015 Phys. Rev. B 92 045133Google Scholar

    [29]

    Flatten T, Matthes F, Petruhins A, Salikhov R, Wiedwald U, Farle M, Rosen J, Bürgler D E, Schneider C M 2019 Appl. Phys. Lett. 115 094101Google Scholar

    [30]

    Schuster J C, Nowotny H, Vaccaro C 1980 J. Solid State Chem. 32 213Google Scholar

    [31]

    Schneider J M, Sun Z, Mertens R, Uestel F, Ahuja R 2004 Solid State Commun. 130 445Google Scholar

    [32]

    Drulis M K, Drulis H, Gupta S, Barsoum M W, El-Raghy T 2006 J. Appl. Phys. 99 093502Google Scholar

    [33]

    Bai Y L, He X D, Zhu C C, Chen G Q 2012 J. Am. Ceram. Soc. 95 358Google Scholar

    [34]

    Vovk R V, Khadzhai G Y, Prikhna T A, Gevorkyan E S, Kislitsa M V, Soloviev A L, Goulatis I L, Chroneos A 2018 J. Mater. Sci. -Mater. Electron. 29 11478Google Scholar

    [35]

    Hu C, Sakka Y, Tanaka H, Nishimura T, Grasso S 2011 J. Am. Ceram. Soc. 94 410Google Scholar

    [36]

    Cai P, He Q, Yang L, Huang Z, Liu X, Yin J, Huang Y 2019 Ceram. Int. 45 9799Google Scholar

    [37]

    Yoo H I, Barsoum M W, El-Raghy T 2000 Nature 407 581

    [38]

    Finkel P, Seaman B, Harrell K, Palma J, Hettinger J D, Lofland S E, Ganguly A, Barsoum M W, Sun Z, Li S, Ahuja R 2004 Phys. Rev. B 70 085104Google Scholar

    [39]

    Chen K, Chen Y, Zhang J, Song Y, Zhou X, Li M, Fan X, Zhou J, Huang Q 2021 Ceram. Int. 47 7582Google Scholar

    [40]

    Sonntag J 2010 J. Phys. Condens. Matter 22 235501Google Scholar

    [41]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135Google Scholar

    [42]

    Zhang F, Zhang Z, Wang H, Chan C H, Chan N Y, Chen X X, Dai J Y 2017 Phys. Rev. Mater. 1 034002Google Scholar

    [43]

    Du Z G, Yang S B, Li S M, Lou J, Zhang S Q, Wang S, Li B, Gong Y J, Song L, Zou X L, Ajayan P M 2020 Nature 577 492Google Scholar

    [44]

    Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q 2016 Angew. Chem. Int. Ed. 55 5008Google Scholar

    [45]

    Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q 2017 ACS Nano 11 3841Google Scholar

    [46]

    Zhou J, Zha X H, Yildizhan M, Eklund P, Xue J M, Liao M Y, Persson P O A, Du S Y, Huang Q 2019 ACS Nano 13 1195Google Scholar

    [47]

    Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W 2013 J. Am. Chem. Soc. 135 15966Google Scholar

    [48]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W 2015 ACS Nano 9 9507Google Scholar

    [49]

    Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A 2016 Adv. Electron. Mater. 2 1600255Google Scholar

    [50]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Des. 114 161Google Scholar

    [51]

    Zhang B, Zhu J F, Shi P, Wu W L, Wang F 2019 Ceram. Int. 45 8395Google Scholar

    [52]

    Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X 2019 ACS Mater. Lett. 1 628Google Scholar

    [53]

    Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y 2014 Angew. Chem. Int. Ed. 53 4877Google Scholar

    [54]

    Yang S, Zhang P, Wang F, Ricciardulli A G, Lohe M R, Blom P W M, Feng X 2018 Angew. Chem. Int. Ed. 57 15491Google Scholar

    [55]

    Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H 2019 J. Am. Chem. Soc. 141 9610Google Scholar

    [56]

    Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J 2017 J. Mater. Chem. A 5 21663Google Scholar

    [57]

    Song M, Pang S Y, Guo F, Wong M C, Hao J 2020 Adv. Sci. 7 2001546Google Scholar

    [58]

    Li X L, Li M, Yang Q, Liang G J, Huang Z D, Ma L T, Wang D H, Mo F N, Dong B B, Huang Q, Zhi C Y 2020 Adv. Energy Mater. 10 2001394Google Scholar

    [59]

    Chertopalov S, Mochalin V N 2018 ACS Nano 12 6109Google Scholar

    [60]

    Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W 2020 Chem. 6 616Google Scholar

    [61]

    Mei J, Ayoko G A, Hu C F, Sun Z Q 2020 Chem. Eng. J. 395 125111Google Scholar

    [62]

    Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O A, Du S Y, Chai Z F, Huang Z R, Huang Q 2019 J. Am. Chem. Soc. 141 4730Google Scholar

    [63]

    Li Y, Shao H, Lin Z, Lu J, Liu L, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X-H, Du S, Rozier P, Chai Z, Raymundo-Piñero E, Taberna P-L, Simon P, Huang Q 2020 Nat. Mater. 19 894Google Scholar

    [64]

    Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V 2020 Science 369 979Google Scholar

    [65]

    Shi H, Zhang P, Liu Z, Park S, Lohe M R, Wu Y, Shaygan Nia A, Yang S, Feng X 2021 Angew. Chem. Int. Ed. 60 8689Google Scholar

    [66]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [67]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [68]

    Liu P, Ding W J, Liu J, Shen L L, Jiang F X, Liu P P, Zhu Z Y, Zhang G, Liu C C, Xu J K 2020 J. Alloys Compd. 829 154634Google Scholar

    [69]

    Ding W, Liu P, Bai Z, Wang Y, Liu G, Jiang Q, Jiang F, Liu P, Liu C, Xu J 2020 Adv. Mater. Interfaces 7 2001340Google Scholar

    [70]

    Guan X, Feng W, Wang X Z, Venkatesh R, Ouyang J Y 2020 ACS Appl. Mater. Interfaces 12 13013Google Scholar

    [71]

    Li X H, Zhang R Z, Cui H L 2020 ACS Omega 5 18403Google Scholar

    [72]

    Bafekry A, Nguyen C V, Stampfl C, Akgenc B, Ghergherehchi M 2020 Phys. Status Solidi B 257 2000343Google Scholar

    [73]

    Bafekry A, Akgenc B, Ghergherehchi M, Peeters F M 2020 J. Phys. Condens. Matter 32 355701Google Scholar

    [74]

    Zhang H, Hu T, Wang X, Zhou Y 2020 J. Mater. Sci. Technol. 38 205Google Scholar

    [75]

    Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, Halim J, Palisaitis J, Hultman L, Barsoum M W, Persson P O Å, Rosen J 2017 Nat. Commun. 8 14949Google Scholar

    [76]

    Meshkian R, Dahlqvist M, Lu J, Wickman B, Halim J, Thörnberg J, Tao Q Z, Li S X, Intikhab S, Snyder J, Barsoum M W, Yildizhan M, Palisaitis J, Hultman L, Persson P, Rosen J 2018 Adv. Mater. 30 1706409Google Scholar

    [77]

    Meshkian R, Lind H, Halim J, El Ghazaly A, Thörnberg J, Tao Q, Dahlqvist M, Palisaitis J, Persson P O Å, Rosen J 2019 ACS Appl. Nano Mater. 2 6209Google Scholar

    [78]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [79]

    Guo J, Legum B, Anasori B, Wang K, Lelyukh P, Gogotsi Y, Randall C A 2018 Adv. Mater. 30 1801846Google Scholar

    [80]

    Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y 2013 Adv. Funct. Mater. 23 2185Google Scholar

    [81]

    Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841Google Scholar

    [82]

    Zha X H, Luo K, Li Q, Huang Q, He J, Wen X, Du S 2015 EPL 111 26007Google Scholar

    [83]

    Zha X H, Zhou J, Zhou Y H, Huang Q, He J, Francisco J S, Luo K, Du S Y 2016 Nanoscale 8 6110Google Scholar

    [84]

    Luo K, Zha X H, Zhou Y H, Guo Z S, Lin C T, Huang Q, Zhou S H, Zhang R F, Du S Y 2018 RSC Adv. 8 22452Google Scholar

    [85]

    Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z 2015 Nanoscale 7 16020Google Scholar

    [86]

    Xie Y, Kent P R C 2013 Phys. Rev. B 87 235441Google Scholar

    [87]

    Zha X H, Huang Q, He J, He H M, Zhai J Y, Francisco J S, Du S Y 2016 Sci. Rep. 6 1Google Scholar

    [88]

    Xu X, Ge X, Liu X, Li L, Fu K, Dong Y, Meng F, Si R, Zhang M 2020 Ceram. Int. 46 13377Google Scholar

    [89]

    Miranda A, Halim J, Barsoum M W, Lorke A 2016 Appl. Phys. Lett. 108 033102Google Scholar

    [90]

    Jing H, Yeo H, Lyu B, Ryou J, Choi S, Park J H, Lee B H, Kim Y H, Lee S 2021 ACS Nano 15 1388Google Scholar

    [91]

    Gao L G, Wang N, Cao J M, Li Y, Ma T L 2020 Surf. Interfaces 20 100604Google Scholar

    [92]

    Mostafaei A, Faizabadi E, Semiromi E H 2019 Physica E 114 113559Google Scholar

    [93]

    Zhang Y G, Sa B S, Zhou J, Sun Z M 2021 Comput. Mater. Sci. 186 110013Google Scholar

    [94]

    Li L H 2016 Comput. Mater. Sci. 124 8Google Scholar

    [95]

    Si C, Jin K H, Zhou J, Sun Z, Liu F 2016 Nano Lett. 16 6584Google Scholar

    [96]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [97]

    Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y 2016 Nanoscale Horiz. 1 227Google Scholar

    [98]

    Je M, Lee Y, Chung Y C 2016 Thin Solid Films 619 131Google Scholar

    [99]

    Bai X, Zha X H, Qiao Y, Qiu N, Zhang Y, Luo K, He J, Li Q, Huang Q, Francisco J S, Lin C T, Du S 2020 Nanoscale 12 3795Google Scholar

  • [1] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240112
    [2] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [3] 黄露露, 张建, 孔源, 李地, 辛红星, 秦晓英. 黄铜矿Cu1–xNixGaTe2热电输运性质的优化. 物理学报, 2021, 70(20): 207101. doi: 10.7498/aps.70.20211165
    [4] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [5] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [6] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, 2021, 70(15): 157401. doi: 10.7498/aps.70.20202020
    [7] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [8] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [9] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, 2020, 69(14): 146801. doi: 10.7498/aps.69.20200436
    [10] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [11] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [12] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [13] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [14] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [15] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, 2013, 62(9): 097301. doi: 10.7498/aps.62.097301
    [16] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, 2012, 61(8): 087202. doi: 10.7498/aps.61.087202
    [17] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, 2012, 61(4): 048401. doi: 10.7498/aps.61.048401
    [18] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [19] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  9863
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-08-30
  • 上网日期:  2021-09-06
  • 刊出日期:  2021-10-20

/

返回文章
返回