搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射

谢卓 温智琳 司明奇 窦银萍 宋晓伟 林景全

引用本文:
Citation:

双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射

谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全

Characteristics of extreme ultraviolet emission from Gd plasma produced by dual pulse laser

Xie Zhuo, Wen Zhi-Lin, Si Ming-Qi, Dou Yin-Ping, Song Xiao-Wei, Lin Jing-Quan
PDF
HTML
导出引用
  • 高端芯片制造所需要的极紫外光刻技术位于我国当前面临35项“卡脖子”关键核心技术之首. 高转换效率的极紫外光源是极紫外光刻系统的重要组成部分. 本文通过采用双激光脉冲打靶技术实现较强的6.7 nm极紫外光输出. 首先, 理论计算Gd18+—Gd27+离子最外层4d壳层的4p-4d和4d-4f能级之间跃迁、以及Gd14+—Gd17+离子最外层4f壳层的4d-4f能级之间跃迁对波长为6.7 nm附近极紫外光的贡献. 其后开展实验研究, 结果表明, 随着双脉冲之间延时的逐渐增加, 波长为6.7 nm附近的极紫外光辐射强度呈现先减弱、后增加、之后再减弱的变化趋势, 在双脉冲延时为100 ns处产生的极紫外光辐射最强. 并且, 在延时为100 ns处产生的光谱效率最高, 相比于单脉冲激光产生的光谱效率提升了33%. 此外, 发现双激光脉冲打靶技术可以有效地减弱等离子体的自吸收效应, 获得的6.7 nm附近极紫外光谱宽度均小于单激光脉冲打靶的情形, 且在脉冲延时为30 ns时刻所产生的光谱宽度最窄, 约为单独主脉冲产生极紫外光谱宽度的1/3. 同时, Gd极紫外光谱的变窄提高了波长为6.7 nm (0.6%带内)附近的光谱利用效率.
    The extreme ultraviolet (EUV) lithography technology, which is required for high-end chip manufacturing, is the first of 35 “neck stuck” key core technologies that China is facing currently. The EUV source with high conversion efficiency is an important part of EUV lithography system. The experiment on dual-pulse irradiated Gd target is carried out to realize the stronger 6.7 nm EUV emission output. Firstly, we compute the contribution of transition arrays of the form 4p-4d and 4d-4f from their open 4d subshell in charge states Gd18+−Gd27+, and transition arrays of the form 4d-4f from their open 4d subshell in charge states Gd14+−Gd17+ on the near 6.7 nm EUV source. Subsequently, the experimental results of the dual pulse laser irradiated Gd target show that the intensity of 6.7 nm peak EUV emission decreases first, then increases and drops again due to the plasma density decreasing gradually when the delay time between the pre-pulse and main-pulse increases from 0−500 ns. The strongest intensity of 6.7 nm peak EUV emission is generated when the delay time is 100 ns. At the same time, the spectrum efficiency is higher when the delay time is 100 ns, which is 33% higher than that of single pulse laser. In addition, the experimental results show that the half width of EUV spectrum produced by dual pulse in the delay between 10−500 ns is narrower than that of signal laser pulse due to the fact that the method of dual pulse can suppress the self-absorption effect. The half width is the narrowest when the delay is 30 ns, which is about 1/3 time of EUV spectrum width generated by a single pulse. At the same time, the narrowing of Gd EUV spectrum improves the spectral utilization efficiency near 6.7 nm wavelength (within 0.6% bandwidth).
      通信作者: 窦银萍, douzi714@126.com ; 林景全, linjingquan@cust.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62005021, 62105040)、国家自然科学基金(批准号: 62175018)、重庆市自然科学基金(批准号: cstc2021jcyj-msxmX0735)、吉林省科技发展计划重点研发项目(批准号: 20200401052GX)、吉林省教育厅项目(批准号: JJKH20210799KJ)和吉林省超快与极紫外光学重点实验室(批准号: YDZJ202102CXJD028)资助的课题.
      Corresponding author: Dou Yin-Ping, douzi714@126.com ; Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 62005021, 62105040), the National Natural Science Foundation of China (Grant No. 62175018), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0735), the Key R&D Program of Scientific and Technological Development Plan of Jilin Province, China (Grant No. 20200401052GX), the Department of Education of Jilin Province, China (Grant No. JJKH20210799KJ), and the Key Laboratory of Ultrafast and Extreme Ultraviolet Optics of Jilin Province, China (Grant No. YDZJ202102CXJD028).
    [1]

    Schmitz C, Wilson D, Rudolf D, Wiemann C, Plucinski L, Riess S, Schuck M, Hardtdegen H, Schneider C M, Tautz F S, Juschkin L 2016 Appl. Phys. Lett. 108 234101Google Scholar

    [2]

    Barkusky F, Bayer A, Döring S, Flöter B, Großmann P, Peth Cn, Reese M, Mann K 2010 The International Society for Optical Engineering. Prague, Czech Republic April 20, 2009 p7361

    [3]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [4]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 1

    [5]

    Torretti F, Liu F, Bayraktar M, Scheers J, Bouza Z, Ubachs W, Hoekstra R, Versolato O O 2019 J. Phys. D: Appl. Phys. 53 055204Google Scholar

    [6]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [7]

    Huang Q S, Medvedev V, Kruijs R V D, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Rev. 4 011104Google Scholar

    [8]

    Wu B Q, Kumar A 2007 J. Vac. Sci. Technol., B 25 1743Google Scholar

    [9]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Appl. Phys. Lett. 97 231501Google Scholar

    [10]

    Wezyk A V, Andrianov K, Wilhein T, Bergmann K 2019 J. Phys. D: Appl. Phys. 52 505202Google Scholar

    [11]

    Chkhalo N I, Künstner S, Polkovnikov V N, Salashchenko N N, Schäfers F, Starikov S D 2013 Appl. Phys. Lett. 102 011602Google Scholar

    [12]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Eshima Takeo, Ohashi H, Nishikino M, Scally E, Nshimura H, Azechi H, O'Sullivan G 2016 J. Phys. Conf. Ser. 688 012046Google Scholar

    [13]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Ohashi H, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Ejima T, Nishikino M, Sunahara A, Scally E, Li B W, Yanagida T, Nishimura H, Azechi H, O'Sullivan G 2014 Appl. Phys. Express. 7 086202Google Scholar

    [14]

    Cummins T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 061118Google Scholar

    [15]

    Yin L, Wang H C, Reagan B A, Baumgarten C, Gullikson E, Berrill M, Shlyaptsev V N, Rocca J J 2016 Phys. Rev. Appl. 6 034009Google Scholar

    [16]

    Xu Q, Tian H, Zhao Y, Wang Q 2019 Symmetry 11 658Google Scholar

    [17]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Opt. Laser Technol. 138 106904Google Scholar

    [18]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y Z, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [19]

    Higashiguchi T, Li B W, Suzuki Y, Kawasaki M, Ohashi H, Torii S, Nakamura D, Takahashi A, Okada T, Jiang W H, Miura T, Endo A, Dunne P, O'Sullivan G, Makimura T 2013 Opt. Express 21 031837Google Scholar

    [20]

    Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, Kilbane D, Dunne P, O'Sullivan G 2011 Appl. Phys. Lett. 99 191502Google Scholar

    [21]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [22]

    Higashiguchi T, Dojyo N, Hamada M, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 201503Google Scholar

    [23]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [24]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202Google Scholar

    [25]

    Kilbane D, O'Sullivan G 2010 J. Appl. Phys. 108 104905Google Scholar

    [26]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press) pp619–625

    [27]

    Aota T, Tomie T 2005 Phys. Rev. Lett. 94 015004Google Scholar

    [28]

    Hassanein A, Sizyuk T, Sizyuk V, Harilal S S 2011 J. Micro/Nanolithgr. MEMS MOEMS 10 033002Google Scholar

    [29]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [30]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303Google Scholar

    [31]

    Li B W, Dunne P, Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, O'Sullivan G 2011 Appl. Phys. Lett. 99 231502Google Scholar

    [32]

    National Institute of Standards and Technology https://nlte.nist.gov/FLY/ [2018-8]

    [33]

    Higashiguchi T, Yamaguchi M, Otsuka T, Nagata T, Ohashi H, Li B W, D'Arcy R, Dunne P, O'Sullivan G 2014 Rev. Sci. Instrum. 85 096102Google Scholar

    [34]

    Favre A, Morel V, Bultel A, Godard G, Idlahcen S, Benyagoub A, Monnet I, Semerokc A, Dinescu Maria, Markelj S, Magaud P, Grisolia C 2021 Fusion. Eng. Des. 168 112364Google Scholar

    [35]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O'Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O'Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

  • 图 1  双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射实验装置图

    Fig. 1.  Experimental setup for the characteristics of EUV emission from Gd plasma produced by dual laser.

    图 2  Gd靶激光等离子体极紫外光辐射实验曲线(黑色)和理论计算Gd不同离子价态自发辐射速率与波长之间的关系(红色). 图中的14+—27+表示Gd离子阶数. Gd18+—Gd27+离子的跃迁类型为Δn = 0, n = 4, 4p64dm-4p54dm+1 + 4dm–14f (m = 1—10), Gd14+—Gd17+离子的跃迁类型为Δn = 0, n = 4, 4d104fm-4d94fm+1 (m = 1—4)和Δn = 1, n = 4, n = 5, 4d104f-4d94fm–15d + 4d94fm–15g (m = 1—4)

    Fig. 2.  Experimental waveform of laser produced Gd plasma EUV emission (black line), and the transition probabilities of Gd14+−Gd27+ computed with the Cowan code including the effects of CI (red line). The transition type of Gd18+− Gd27+ is Δn = 0, n = 4, 4p64dm-4p54dm+1 + 4dm–14f (m = 1−10). And the transition type of Gd14+− Gd17+ is Δn = 0, n = 4, 4d104fm-4d94fm+1 (m = 1−4), and Δn = 1, n = 4, n = 5, 4d104f-4d94fm–15d + 4d94fm–15g (m = 1−4).

    图 3  不同延时下, (a) 6.7 nm极紫外光辐射曲线以及(b) 6.7 nm峰值附近处辐射强度. 主脉冲激光功率为2 × 1012 W/cm2、预脉冲激光功率为2.2 × 1010 W/cm2

    Fig. 3.  (a) The impendence of 6.7 nm EUV spectrum radiation and (b) the radiation intensity of the 6.7 nm peak on the different delay time with the main pulse laser density of 2 × 1012 W/cm2 and pre-pulse laser density of 2.2 × 1010 W/cm2.

    图 4  延时为30, 100 ns和主脉冲三种情况下的极紫外光谱宽度对比图

    Fig. 4.  Comparisons of EUV spectral widths under the delay of 30, 100 ns and main pulse.

    图 5  在电子密度为1019 (a)和1020 cm–3 (b)条件下, 离子丰度与电子温度之间的关系, 图中的14+—25+表示Gd 离子阶数

    Fig. 5.  Ionic populations of Gd plasma as a function of Te under the electron density of 1019 (a) and 1020 cm–3 (b). The numbers in the figure are represented the ion stages of Gd plasma.

    图 6  固定电子温度为100 eV条件下, Gd18+离子丰度与电子密度之间的关系

    Fig. 6.  The Gd18+ ion population dependence of electron density under the electron temperature of 100 eV.

    图 7  不同延时下, 波长6.7 nm左右的0.6%带内的光谱效率

    Fig. 7.  Spectral efficiency of the 0.6% in band radiation around 6.7 nm to the total radiation between 5−10 nm under the main pulse and dual pulse with different delay time.

  • [1]

    Schmitz C, Wilson D, Rudolf D, Wiemann C, Plucinski L, Riess S, Schuck M, Hardtdegen H, Schneider C M, Tautz F S, Juschkin L 2016 Appl. Phys. Lett. 108 234101Google Scholar

    [2]

    Barkusky F, Bayer A, Döring S, Flöter B, Großmann P, Peth Cn, Reese M, Mann K 2010 The International Society for Optical Engineering. Prague, Czech Republic April 20, 2009 p7361

    [3]

    Wagner C, Harned N 2010 Nat. Photonics 4 24Google Scholar

    [4]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 1

    [5]

    Torretti F, Liu F, Bayraktar M, Scheers J, Bouza Z, Ubachs W, Hoekstra R, Versolato O O 2019 J. Phys. D: Appl. Phys. 53 055204Google Scholar

    [6]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [7]

    Huang Q S, Medvedev V, Kruijs R V D, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Rev. 4 011104Google Scholar

    [8]

    Wu B Q, Kumar A 2007 J. Vac. Sci. Technol., B 25 1743Google Scholar

    [9]

    Sasaki A, Nishihara K, Sunahara A, Furukawa H, Nishikawa T, Koike F 2010 Appl. Phys. Lett. 97 231501Google Scholar

    [10]

    Wezyk A V, Andrianov K, Wilhein T, Bergmann K 2019 J. Phys. D: Appl. Phys. 52 505202Google Scholar

    [11]

    Chkhalo N I, Künstner S, Polkovnikov V N, Salashchenko N N, Schäfers F, Starikov S D 2013 Appl. Phys. Lett. 102 011602Google Scholar

    [12]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Eshima Takeo, Ohashi H, Nishikino M, Scally E, Nshimura H, Azechi H, O'Sullivan G 2016 J. Phys. Conf. Ser. 688 012046Google Scholar

    [13]

    Yoshida K, Fujioka S, Higashiguchi T, Ugomori T, Tanaka N, Ohashi H, Kawasaki M, Suzuki Y, Suzuki C, Tomita K, Hirose R, Ejima T, Nishikino M, Sunahara A, Scally E, Li B W, Yanagida T, Nishimura H, Azechi H, O'Sullivan G 2014 Appl. Phys. Express. 7 086202Google Scholar

    [14]

    Cummins T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 061118Google Scholar

    [15]

    Yin L, Wang H C, Reagan B A, Baumgarten C, Gullikson E, Berrill M, Shlyaptsev V N, Rocca J J 2016 Phys. Rev. Appl. 6 034009Google Scholar

    [16]

    Xu Q, Tian H, Zhao Y, Wang Q 2019 Symmetry 11 658Google Scholar

    [17]

    Wang J W, Wang X B, Zuo D L, Zakharov V S 2021 Opt. Laser Technol. 138 106904Google Scholar

    [18]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y Z, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [19]

    Higashiguchi T, Li B W, Suzuki Y, Kawasaki M, Ohashi H, Torii S, Nakamura D, Takahashi A, Okada T, Jiang W H, Miura T, Endo A, Dunne P, O'Sullivan G, Makimura T 2013 Opt. Express 21 031837Google Scholar

    [20]

    Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, Li B W, Kilbane D, Dunne P, O'Sullivan G 2011 Appl. Phys. Lett. 99 191502Google Scholar

    [21]

    Freeman J R, Harilal S S, Hassanein A 2011 J. Appl. Phys. 110 083303Google Scholar

    [22]

    Higashiguchi T, Dojyo N, Hamada M, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 201503Google Scholar

    [23]

    Freeman J R, Harilal S S, Hassanein A, Rice B 2013 Appl. Phys. A 110 853Google Scholar

    [24]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202Google Scholar

    [25]

    Kilbane D, O'Sullivan G 2010 J. Appl. Phys. 108 104905Google Scholar

    [26]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press) pp619–625

    [27]

    Aota T, Tomie T 2005 Phys. Rev. Lett. 94 015004Google Scholar

    [28]

    Hassanein A, Sizyuk T, Sizyuk V, Harilal S S 2011 J. Micro/Nanolithgr. MEMS MOEMS 10 033002Google Scholar

    [29]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [30]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303Google Scholar

    [31]

    Li B W, Dunne P, Higashiguchi T, Otsuka T, Yugami N, Jiang W H, Endo A, O'Sullivan G 2011 Appl. Phys. Lett. 99 231502Google Scholar

    [32]

    National Institute of Standards and Technology https://nlte.nist.gov/FLY/ [2018-8]

    [33]

    Higashiguchi T, Yamaguchi M, Otsuka T, Nagata T, Ohashi H, Li B W, D'Arcy R, Dunne P, O'Sullivan G 2014 Rev. Sci. Instrum. 85 096102Google Scholar

    [34]

    Favre A, Morel V, Bultel A, Godard G, Idlahcen S, Benyagoub A, Monnet I, Semerokc A, Dinescu Maria, Markelj S, Magaud P, Grisolia C 2021 Fusion. Eng. Des. 168 112364Google Scholar

    [35]

    Beyene G A, Tobin I, Juschkin L, Hayden P, O'Sullivan G, Sokell E, Zakharov V S, Zakharov S V, O'Reilly F 2016 J. Phys. D: Appl. Phys. 49 225201Google Scholar

  • [1] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [3] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [4] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [5] 张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆. EAST等离子体Mo V-Mo XVIII极紫外光谱的识别. 物理学报, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [6] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [7] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [8] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [9] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [10] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究. 物理学报, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究. 物理学报, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [13] 古丽姗, 王东升, 彭勇刚, 郑雨军. 单量子点在双脉冲激发下偏振光子发射的统计特性. 物理学报, 2011, 60(8): 084207. doi: 10.7498/aps.60.084207
    [14] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [15] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [16] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究. 物理学报, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [17] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [18] 黄文忠, 何绍堂, 孔令华, 韩红军, 方泉玉, 陈国兴. 锗等离子体远紫外光谱研究. 物理学报, 1994, 43(7): 1066-1071. doi: 10.7498/aps.43.1066
    [19] 王文书, 李赞良, 黄矛. CT-6B托卡马克等离子体的真空紫外光谱. 物理学报, 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  5057
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 修回日期:  2021-09-16
  • 上网日期:  2022-01-21
  • 刊出日期:  2022-02-05

/

返回文章
返回