-
高电荷态离子精细结构跃迁波长的精密测量不仅可以检验量子电动力学(quantum electrodynamics, QED)效应、电子关联效应等基本物理模型, 还能够为天体物理、聚变等离子体物理甚至高电荷态离子光钟等研究提供关键原子物理数据. 本工作基于复旦大学现代物理研究所的高温超导电子束离子阱(SH-HtscEBIT)装置, 搭建了一套新的光谱校刻系统, 并结合内校刻与外校刻的方法对其光谱波长测量的不确定度进行了评估, 新的光谱校刻系统在可见光波段引起的波长不确定度最低达到0.002 nm. 在此基础上, 使用SH-HtscEBIT装置结合新的校刻系统开展了Ar13+离子1s22s22p 2P1/2 —2P3/2磁偶极跃迁(M1)波长的精密测量, 实验测得该跃迁波长为(441.2567 ± 0.0026) nm, 是目前SH-HtscEBIT上测量精度最高的实验结果, 为下一步开展高电荷态离子超精细分裂和同位素位移等精密测量实验奠定了基础.The precise measurement of the transition wavelength of the fine structure of highly charged ions can not only test basic physical theories including the quantum electrodynamics effect and the electronic correlation effect but also provide key atomic data for astrophysics and fusion plasma physics. Furthermore, highly charged ions are considered as a potential candidate for optical clocks with extremely ultra-high precision. In this work, a new spectral calibration system is built in a high-temperature superconducting electron beam ion trap (SH-HtscEBIT) in the Institute of Modern Physics, Fudan University, and the uncertainty of its spectrum wavelength measurement is evaluated by combining internal and external calibrations. The minimum wavelength uncertainty caused by the new spectral calibration system in the visible light band reaches 0.002 nm. On this basis, the precise measurement of 2s22p 2P1/2-2P3/2 M1 transition wavelength for boron-like Ar13+ is performed at the SH-HtscEBIT by utilizing the new calibration system. The experimentally measured transition wavelength is (441.2567 ± 0.0026) nm. It is currently the experimental result with the highest measurement accuracy of spectroscopy of highly charged ions at the SH-HtscEBIT, which lays the foundation for the precise measurement of the hyperfine splitting and isotope shift of highly charged ions in the future experiments.
-
Keywords:
- electron beam ion trap /
- forbidden transition /
- precision measurement /
- highly charged ions
[1] Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar
[2] Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar
[3] Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar
[4] Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar
[5] Collaboration H 2017 Nature 551 478Google Scholar
[6] Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar
[7] Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar
[8] Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar
[9] Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar
[10] Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar
[11] Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar
[12] Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar
[13] Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar
[14] Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar
[15] Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar
[16] Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar
[17] Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar
[18] Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar
[19] Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar
[20] Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar
[21] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[22] Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar
[23] Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar
[24] Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar
[25] Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar
[26] Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar
[27] Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar
[28] Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar
[29] Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar
[30] Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434
[31] Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar
[32] Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar
[33] Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar
[34] Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar
[35] Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar
[36] Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar
[37] Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar
[38] Edlén B 1983 Phys. Scr. 28 483Google Scholar
[39] Natarajan L 2021 Phys. Scr. 96 105402Google Scholar
[40] Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar
[41] Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar
[42] Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar
[43] Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar
[44] Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar
-
图 3 三种不同的光谱校刻方案 (a)使用校刻灯在EBIT外照射直接校刻方案; (b)通过观测注入EBIT的惰性气体谱线在EBIT内直接内校刻方案; (c)使用校刻灯结合新的共轭光谱校刻系统的外校刻方案
Fig. 3. Three different spectral calibration schemes: (a) Direct calibration scheme by using the calibration lamp at outside of the EBIT; (b) direct calibration scheme in the EBIT by observing the inert gas spectrum line injected into the EBIT; (c) the external calibration scheme using the calibration lamp combined with the new conjugate spectrum calibration system.
图 4 (a)使用新校刻系统测量的Ne灯光谱图与注入EBIT的Ne原子线的光谱图; (b)校刻系统多次测试结果(正负表示偏移方向), 黑色实线表示偏移的算数平均值
Fig. 4. (a) Spectrum of Ne lamp measured with the new calibration system and the observed spectrum of Ne atomic line injected into the EBIT; (b) the multiple test results of the proof system (positive and negative indicate the offset direction), the black solid line indicates the arithmetic average of the offset.
图 5 (a) Kr灯校刻线的光谱图; (b) 使用一阶(方框)、二阶(圆)和三阶(叉)多项式拟合色散函数的所有残差; (c) 二阶和三阶多项式拟合残差的放大, 浅色带为二阶多项式拟合的一倍标准差置信带
Fig. 5. (a) Spectrum of Kr lamp calibration line; (b) all residuals from the dispersion function fit, using first (square), second (circle), and third (cross) degree polynomials; (c) second- and third-degree polynomial residuals (enlarged scale), the light-colored band is a 1-σ confidence band.
图 6 (a) 用SH-HtscEBIT在415—465 nm范围内, 获得了标称电子束能量为780, 800, 810, 820和870 eV Ar13+离子1s22s22p 2P基态M1跃迁的可见光谱; (b) Ar13+的441 nm跃迁谱线高斯拟合示例; (c) Ar13+跃迁波长的多次测量结果, 图中深色直线表示加权平均波长, 浅色带表示加权平均波长的不确定度
Fig. 6. (a) With SH-HtscEBIT in the range of 415–465 nm, the visible spectrum of the M1 transition for the 2s22p 2P ground term of Ar13+ with nominal electron beam energy of 780, 800, 810, 820 and 870 eV were obtained; (b) Gaussian fitting example of 441 nm transition spectrum of Ar13+; (c) multiple measurement results of Ar13+ transition wavelength, the dark line in the figure represents the weighted average wavelength, and the light color band represents the uncertainty of the weighted average wavelength.
表 1 SH-HtscEBIT的参数[30]
Table 1. Parameters of SH-HtscEBIT.
参数 设计指标 电子束能量 30—4000 eV 电子束流强 10 mA 电子束流半径 ~65 μm 真空度 ~1.0 × 10–9 Torr 液氮消耗速率 0.6—1.5 L/h 磁场强度 0—0.25 T 表 2 Ar13+的光谱校刻谱线位置与NIST数据库中参考波长
Table 2. Pixel positions of the fitted Ar13+ spectral calibration lines and the corresponding reference wavelength in the NIST database.
峰中心像素 NIST波长/nm 457.350(6) 427.39694 572.865(22) 431.95795 682.297(14) 436.26416 716.578(10) 437.61216 915.031(9) 445.39175 939.998(13) 446.36900 1039.015(14) 450.23543 表 3 Ar13+离子测量波长的不确定度
Table 3. Uncertainties of the measured wavelengths for Ar13+.
不确定度来源 对波长不确定度的贡献/pm 线形中心 0.58 色散函数 0.46 校刻线 0.01 校刻系统 1.76 总不确定度 2.6 表 4 Ar13+跃迁波长的实验与理论结果比较 (空气中)
Table 4. Comparison of experimental and theoretical results of transition wavelength Ar13+ (in Air).
来源 年份 类型 波长/nm This work 2021 实验测量 441.2567(26) 文献[33] 2011 实验测量 441.25568(26) 文献[34] 2007 实验测量 441.257(2) 文献[35] 2006 实验测量 441.2556(1) 文献[8] 2003 实验测量 441.2559(1) 文献[25] 1997 实验测量 441.250(3) 文献[36] 1987 实验测量 441.23(9) 文献[37] 1986 天文观测 441.24(2) 文献[38] 1983 天文观测 441.23(9) 文献[39] 2021 理论计算 440.90 文献[40] 2019 理论计算 442.7(70) 文献[41] 2013 理论计算 441.238(63) 文献[42] 2007 理论计算 441.261(70) 文献[43] 1996 理论计算 441.16(27) 文献[37] 1986 理论计算 441.6(4) 文献[38] 1983 理论计算 441.32 -
[1] Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar
[2] Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar
[3] Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar
[4] Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar
[5] Collaboration H 2017 Nature 551 478Google Scholar
[6] Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar
[7] Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar
[8] Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar
[9] Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar
[10] Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar
[11] Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar
[12] Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar
[13] Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar
[14] Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar
[15] Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar
[16] Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar
[17] Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar
[18] Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar
[19] Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar
[20] Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar
[21] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[22] Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar
[23] Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar
[24] Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar
[25] Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar
[26] Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar
[27] Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar
[28] Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar
[29] Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar
[30] Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434
[31] Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar
[32] Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar
[33] Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar
[34] Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar
[35] Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar
[36] Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar
[37] Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar
[38] Edlén B 1983 Phys. Scr. 28 483Google Scholar
[39] Natarajan L 2021 Phys. Scr. 96 105402Google Scholar
[40] Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar
[41] Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar
[42] Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar
[43] Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar
[44] Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar
计量
- 文章访问数: 7007
- PDF下载量: 175
- 被引次数: 0