搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量

刘鑫 周晓鹏 汶伟强 陆祺峰 严成龙 许帼芹 肖君 黄忠魁 汪寒冰 陈冬阳 邵林 袁洋 汪书兴 马万路 马新文

引用本文:
Citation:

电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量

刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文

Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+

Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen
PDF
HTML
导出引用
  • 高电荷态离子精细结构跃迁波长的精密测量不仅可以检验量子电动力学(quantum electrodynamics, QED)效应、电子关联效应等基本物理模型, 还能够为天体物理、聚变等离子体物理甚至高电荷态离子光钟等研究提供关键原子物理数据. 本工作基于复旦大学现代物理研究所的高温超导电子束离子阱(SH-HtscEBIT)装置, 搭建了一套新的光谱校刻系统, 并结合内校刻与外校刻的方法对其光谱波长测量的不确定度进行了评估, 新的光谱校刻系统在可见光波段引起的波长不确定度最低达到0.002 nm. 在此基础上, 使用SH-HtscEBIT装置结合新的校刻系统开展了Ar13+离子1s22s22p 2P1/2 2P3/2磁偶极跃迁(M1)波长的精密测量, 实验测得该跃迁波长为(441.2567 ± 0.0026) nm, 是目前SH-HtscEBIT上测量精度最高的实验结果, 为下一步开展高电荷态离子超精细分裂和同位素位移等精密测量实验奠定了基础.
    The precise measurement of the transition wavelength of the fine structure of highly charged ions can not only test basic physical theories including the quantum electrodynamics effect and the electronic correlation effect but also provide key atomic data for astrophysics and fusion plasma physics. Furthermore, highly charged ions are considered as a potential candidate for optical clocks with extremely ultra-high precision. In this work, a new spectral calibration system is built in a high-temperature superconducting electron beam ion trap (SH-HtscEBIT) in the Institute of Modern Physics, Fudan University, and the uncertainty of its spectrum wavelength measurement is evaluated by combining internal and external calibrations. The minimum wavelength uncertainty caused by the new spectral calibration system in the visible light band reaches 0.002 nm. On this basis, the precise measurement of 2s22p 2P1/22P3/2 M1 transition wavelength for boron-like Ar13+ is performed at the SH-HtscEBIT by utilizing the new calibration system. The experimentally measured transition wavelength is (441.2567 ± 0.0026) nm. It is currently the experimental result with the highest measurement accuracy of spectroscopy of highly charged ions at the SH-HtscEBIT, which lays the foundation for the precise measurement of the hyperfine splitting and isotope shift of highly charged ions in the future experiments.
      通信作者: 汶伟强, wenweiqiang@impcas.ac.cn ; 肖君, xiao_jun@fudan.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)、国家自然科学基金(批准号: 11904371, 11974080)、中国科学院战略先导科技专项(批准号: XDB34020000)和中国科学院青年创新促进会资助的课题
      Corresponding author: Wen Wei-Qiang, wenweiqiang@impcas.ac.cn ; Xiao Jun, xiao_jun@fudan.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), the National Natural Science Foundation of China (Grant Nos. 11904371, 11974080), the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (Grant No. XDB34020000), and the subject funded by the Youth Innovation Promotion Association of the Chinese Academy of Sciences.
    [1]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [2]

    Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar

    [3]

    Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar

    [4]

    Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar

    [5]

    Collaboration H 2017 Nature 551 478Google Scholar

    [6]

    Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar

    [7]

    Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar

    [8]

    Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [9]

    Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar

    [10]

    Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar

    [11]

    Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar

    [12]

    Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar

    [13]

    Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar

    [14]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [15]

    Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar

    [16]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [17]

    Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar

    [18]

    Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar

    [19]

    Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar

    [20]

    Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar

    [21]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [22]

    Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar

    [23]

    Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [24]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar

    [25]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [26]

    Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar

    [27]

    Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar

    [28]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [29]

    Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar

    [30]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434

    [31]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [32]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar

    [33]

    Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [34]

    Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar

    [35]

    Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [36]

    Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar

    [37]

    Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar

    [38]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [39]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [40]

    Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar

    [41]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [42]

    Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar

  • 图 1  电子束离子阱的原理结构图以及其中发生的一些原子物理过程

    Fig. 1.  Schematic diagram of the electron beam ion trap and some of the atomic physical processes in EBIT.

    图 2  Andor Shamrock 303i光谱仪内部结构图

    Fig. 2.  Inner structure of the Andor Shamrock 303i spectrograph.

    图 3  三种不同的光谱校刻方案 (a)使用校刻灯在EBIT外照射直接校刻方案; (b)通过观测注入EBIT的惰性气体谱线在EBIT内直接内校刻方案; (c)使用校刻灯结合新的共轭光谱校刻系统的外校刻方案

    Fig. 3.  Three different spectral calibration schemes: (a) Direct calibration scheme by using the calibration lamp at outside of the EBIT; (b) direct calibration scheme in the EBIT by observing the inert gas spectrum line injected into the EBIT; (c) the external calibration scheme using the calibration lamp combined with the new conjugate spectrum calibration system.

    图 4  (a)使用新校刻系统测量的Ne灯光谱图与注入EBIT的Ne原子线的光谱图; (b)校刻系统多次测试结果(正负表示偏移方向), 黑色实线表示偏移的算数平均值

    Fig. 4.  (a) Spectrum of Ne lamp measured with the new calibration system and the observed spectrum of Ne atomic line injected into the EBIT; (b) the multiple test results of the proof system (positive and negative indicate the offset direction), the black solid line indicates the arithmetic average of the offset.

    图 5  (a) Kr灯校刻线的光谱图; (b) 使用一阶(方框)、二阶(圆)和三阶(叉)多项式拟合色散函数的所有残差; (c) 二阶和三阶多项式拟合残差的放大, 浅色带为二阶多项式拟合的一倍标准差置信带

    Fig. 5.  (a) Spectrum of Kr lamp calibration line; (b) all residuals from the dispersion function fit, using first (square), second (circle), and third (cross) degree polynomials; (c) second- and third-degree polynomial residuals (enlarged scale), the light-colored band is a 1-σ confidence band.

    图 6  (a) 用SH-HtscEBIT在415—465 nm范围内, 获得了标称电子束能量为780, 800, 810, 820和870 eV Ar13+离子1s22s22p 2P基态M1跃迁的可见光谱; (b) Ar13+的441 nm跃迁谱线高斯拟合示例; (c) Ar13+跃迁波长的多次测量结果, 图中深色直线表示加权平均波长, 浅色带表示加权平均波长的不确定度

    Fig. 6.  (a) With SH-HtscEBIT in the range of 415–465 nm, the visible spectrum of the M1 transition for the 2s22p 2P ground term of Ar13+ with nominal electron beam energy of 780, 800, 810, 820 and 870 eV were obtained; (b) Gaussian fitting example of 441 nm transition spectrum of Ar13+; (c) multiple measurement results of Ar13+ transition wavelength, the dark line in the figure represents the weighted average wavelength, and the light color band represents the uncertainty of the weighted average wavelength.

    表 1  SH-HtscEBIT的参数[30]

    Table 1.  Parameters of SH-HtscEBIT.

    参数设计指标
    电子束能量30—4000 eV
    电子束流强10 mA
    电子束流半径~65 μm
    真空度~1.0 × 10–9 Torr
    液氮消耗速率0.6—1.5 L/h
    磁场强度0—0.25 T
    下载: 导出CSV

    表 2  Ar13+的光谱校刻谱线位置与NIST数据库中参考波长

    Table 2.  Pixel positions of the fitted Ar13+ spectral calibration lines and the corresponding reference wavelength in the NIST database.

    峰中心像素NIST波长/nm
    457.350(6)427.39694
    572.865(22)431.95795
    682.297(14)436.26416
    716.578(10)437.61216
    915.031(9)445.39175
    939.998(13)446.36900
    1039.015(14)450.23543
    下载: 导出CSV

    表 3  Ar13+离子测量波长的不确定度

    Table 3.  Uncertainties of the measured wavelengths for Ar13+.

    不确定度来源对波长不确定度的贡献/pm
    线形中心0.58
    色散函数0.46
    校刻线0.01
    校刻系统1.76
    总不确定度2.6
    下载: 导出CSV

    表 4  Ar13+跃迁波长的实验与理论结果比较 (空气中)

    Table 4.  Comparison of experimental and theoretical results of transition wavelength Ar13+ (in Air).

    来源年份类型波长/nm
    This work2021实验测量441.2567(26)
    文献[33]2011实验测量441.25568(26)
    文献[34]2007实验测量441.257(2)
    文献[35]2006实验测量441.2556(1)
    文献[8]2003实验测量441.2559(1)
    文献[25]1997实验测量441.250(3)
    文献[36]1987实验测量441.23(9)
    文献[37]1986天文观测441.24(2)
    文献[38]1983天文观测441.23(9)
    文献[39]2021理论计算440.90
    文献[40]2019理论计算442.7(70)
    文献[41]2013理论计算441.238(63)
    文献[42]2007理论计算441.261(70)
    文献[43]1996理论计算441.16(27)
    文献[37]1986理论计算441.6(4)
    文献[38]1983理论计算441.32
    下载: 导出CSV
  • [1]

    Träbert E, Beiersdorfer P, Utter S, Brown G, Chen H, Harris C, Neill P, Savin D, Smith A 2000 Astrophys. J. 541 506Google Scholar

    [2]

    Lisse C M, Christian D J, Dennerl K M K J, Petre R, Weaver H A, Wolk S J 2001 Science 292 1343Google Scholar

    [3]

    Liang G Y, Badnell N R, Zhao G 2012 Astron. Astrophys. 547 A87Google Scholar

    [4]

    Shull J M, Smith B D, Danforth C W 2012 Astrophys. J. 759 23Google Scholar

    [5]

    Collaboration H 2017 Nature 551 478Google Scholar

    [6]

    Reinhardt S, Saathoff G, Buhr H, et al. 2007 Nat. Phys. 3 861Google Scholar

    [7]

    Botermann B, Bing D, Geppert C, et al. 2014 Phys. Rev. Lett. 113 120405Google Scholar

    [8]

    Draganić I, López-Urrutia J C, DuBois R, et al. 2003 Phys. Rev. Lett. 91 183001Google Scholar

    [9]

    Beiersdorfer P, Chen H, Thorn D B, Träbert E 2005 Phys. Rev. Lett. 95 233003Google Scholar

    [10]

    Kozhedub Y S, Glazov D A, Artemyev A N, et al. 2007 Phys. Rev. A 76 012511Google Scholar

    [11]

    Malyshev A V, Volotka A V, Glazov D, Tupitsyn I I, Shabaev V M, Plunien G 2014 Phys. Rev. A 90 062517Google Scholar

    [12]

    Ullmann J, Andelkovic Z, Brandau C, et al. 2017 Nat. Commun. 8 15484Google Scholar

    [13]

    Tupitsyn I I, Shabaev V M, López-Urrutia J C, Draganić I, Orts R S, Ullrich J 2003 Phys. Rev. A 68 022511Google Scholar

    [14]

    Brandau C, Kozhuharov C, Harman Z, et al. 2008 Phys. Rev. Lett. 100 073201Google Scholar

    [15]

    Shabaev V M, Tomaselli M, Kuhl T, Artemyev A N, Yerokhin V A 1997 Phys. Rev. A 56 252Google Scholar

    [16]

    Vogel M, Quint W 2013 Ann. Phys. 525 505Google Scholar

    [17]

    Derevianko A, Dzuba V A, Flambaum V V 2012 Phys. Rev. Lett. 109 180801Google Scholar

    [18]

    Yudin V, Taichenachev A, Derevianko A 2014 Phys. Rev. Lett. 113 233003Google Scholar

    [19]

    Schmöger L, Versolato O O, Schwarz M, et al. 2015 Science 347 1233Google Scholar

    [20]

    Yu Y M, Sahoo B K 2016 Phys. Rev. A 94 062502Google Scholar

    [21]

    Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar

    [22]

    Micke P, Leopold T, King S A, et al. 2020 Nature 578 60Google Scholar

    [23]

    Safronova M S, Budker D, Demille D, Kimball D F J, Derevianko A, Clark C W 2018 Rev. Mod. Phys. 90 025008Google Scholar

    [24]

    Marrs R E, Levine M A, Knapp D A, Henderson J R 1988 Phys. Rev. Lett. 60 1715Google Scholar

    [25]

    Bieber D J, Margolis H S, Oxley P K, Silver J D 1997 Phys. Scr. T73 64Google Scholar

    [26]

    Liang S Y, Zhang T X, Guan H, et al. 2021 Phys. Rev. A 103 022804Google Scholar

    [27]

    Kimura N, Kodama R, Suzuki K, et al. 2019 Phys. Rev. A 100 052508Google Scholar

    [28]

    Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar

    [29]

    Silwal R, Lapierre A, Gillaspy J D, Dreiling J M, Blundell S A, Dipti, Borovik A, Gwinner G, Villari A C C, Ralchenko Y, Takacs E 2018 Phys. Rev. A 98 052502Google Scholar

    [30]

    Xiao J, Zhao R, Jin X, Tu B, Yang Y, Lu D, Hutton R, Zou Y 2013 Proceedings of the 4th International Particle Accelerator Conference, IPAC2013 (JACoW) Shanghai, China, May 12–17, 2013 p434

    [31]

    Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar

    [32]

    Kimura N, Kodama R, Suzuki K, Oishi S, Wada M, Okada K, Ohmae N, Katori H, Nakamura N 2019 Plasma Fusion Res. 14 1201021Google Scholar

    [33]

    Mäckel V, Klawitter R, Brenner G, Crespo López-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar

    [34]

    Katai R, Morita S, Goto M 2007 J. Quant. Spectrosc. Radiat. Transfer 107 120Google Scholar

    [35]

    Orts R S, Harman Z, López-Urrutia J R C, et al. 2006 Phys. Rev. Lett. 97 103002Google Scholar

    [36]

    Prior M H 1987 J. Opt. Soc. Am. B 4 144Google Scholar

    [37]

    Kaufman V, Sugar J 1986 J. Phys. Chem. Ref. Data 15 321Google Scholar

    [38]

    Edlén B 1983 Phys. Scr. 28 483Google Scholar

    [39]

    Natarajan L 2021 Phys. Scr. 96 105402Google Scholar

    [40]

    Yu Y M, Sahoo B K 2019 Phys. Rev. A 99 022513Google Scholar

    [41]

    Artemyev A N, Shabaev V M, Tupitsyn I I, Piunien G 2013 Phys. Rev. A 88 032518Google Scholar

    [42]

    Artemyev A, Shabaev V, Tupitsyn I, Plunien G, Yerokhin V 2007 Phys. Rev. Lett. 98 173004Google Scholar

    [43]

    Safronova M S, Johnson W R, Safronova U I 1996 Phys. Rev. A 54 2850Google Scholar

    [44]

    Egl A, Arapoglou I, Höcker M, et al. 2019 Phys. Rev. Lett. 123 123001Google Scholar

  • [1] 吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁. 高电荷态Ar8+离子与He原子碰撞中双电子俘获量子态选择截面实验研究. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241290
    [2] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [3] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [4] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [5] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [6] 张秉章, 宋张勇, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 徐俊奎, 冯勇, 朱志超, 郭艳玲, 陈林, 孙良亭, 杨治虎, 于得洋. 低能高电荷态${\boldsymbol{ {\rm{O}}^{q+}}}$离子与Al表面作用产生的X射线. 物理学报, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [9] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [10] 张绍庆, 谢娟, 张小平, 支启军. -衰变中容许跃迁和禁戒跃迁的衰变规律. 物理学报, 2016, 65(9): 092101. doi: 10.7498/aps.65.092101
    [11] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [12] 徐忠锋, 刘丽莉, 赵永涛, 陈亮, 朱键, 王瑜玉, 肖国青. 不同能量的高电荷态Ar12+离子辐照对Au纳米颗粒尺寸的影响. 物理学报, 2009, 58(6): 3833-3838. doi: 10.7498/aps.58.3833
    [13] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [14] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [15] 王 立, 张小安, 杨治虎, 陈熙萌, 张红强, 崔 莹, 邵剑雄, 徐 徐. 高电荷态离子入射Al表面库仑势对靶原子特征谱线强度的影响. 物理学报, 2008, 57(1): 137-142. doi: 10.7498/aps.57.137
    [16] 赵永涛, 肖国青, 徐忠锋, Abdul Qayyum, 王瑜玉, 张小安, 李福利, 詹文龙. 高电荷态离子40Arq+与Si表面作用中的电子发射产额. 物理学报, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [17] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [18] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [20] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
计量
  • 文章访问数:  6559
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-05
  • 上网日期:  2022-01-21
  • 刊出日期:  2022-02-05

/

返回文章
返回