搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海胆状Au-Ag-Pt-Pd四元纳米合金的近红外光电响应特性及拉曼散射增强的研究

马慧 田悦 焦安欣 张梦雅 王畅 陈明

引用本文:
Citation:

海胆状Au-Ag-Pt-Pd四元纳米合金的近红外光电响应特性及拉曼散射增强的研究

马慧, 田悦, 焦安欣, 张梦雅, 王畅, 陈明

Research on near infrared photoelectric response and surface-enhanced Raman scatteringof urchin-like Au-Ag-Pt-Pd nanoalloy

Ma Hui, Tian Yue, Jiao An-Xin, Zhang Meng-Ya, Wang Chang, Chen Ming
PDF
HTML
导出引用
  • 与单金属相比, 多金属纳米材料具有优异宽波谱范围响应的局部表面等离子体共振(LSPR), 有利于提高光致电子转移效率并促进电荷载流子的有效分离. 本文通过种子生长法和化学还原法, 成功合成了具有多触角的海胆状金/银/铂/钯(Au-Ag-Pt-Pd NUs)四元纳米合金, 探究了该纳米合金在不同退火温度下的局部表面等离子体共振(LSPR)响应特性, 实验结果显示, 在近红外光(808 nm)激发下, 退火200 ℃的Au-Ag-Pt-Pd NUs的瞬态光电流强度是初始Au-Ag-Pt-Pd NUs的1.6倍. 此外, 以结晶紫(CV)作为探针分子, 退火200 ℃的Au-Ag-Pt-Pd NUs的表面增强拉曼光谱(SERS)信号强度是初始Au-Ag-Pt-Pd NUs的1.8倍, 从而验证了退火200 ℃的Au-Ag-Pt-Pd NUs具有很好的SERS活性, 同时CV探测浓度可低至10–12 M, 并且实现了低浓度H2O2探测, 探测范围: 0.09—1.02 μmol/L. 结果表明, 由于多重金属协同效应, 四元Au-Ag-Pt-Pd NUs复合结构具备优异的光电响应特性和较高的SERS灵敏度, 可为贵金属生物近红外探测提供新的思路.
    Compared with the single metal, multi-metallic nanoparticle has excellent localized surface plasmon resonance with a wide spectral range response, which is beneficial to improving both the photoinduced electron transfer efficiency and the effective electron-hole separation. In this work, the urchin-like Au-Ag-Pt-Pd nanoalloy (Au-Ag-Pt-Pd NU) with multiple tentacles is successfully synthesized by the seed growth method and chemical reduction method. And we explore the optical properties of Au-Ag-Pt-Pd NU at different annealing temperatures. The results show that the transient photocurrent intensity of Au-Ag-Pt-Pd NU annealed at 200 ℃ is 1.6 times that of the primitive Au-Ag-Pt-Pd NUs at 808 nm excitation. In addition, the SERS signal intensity of crystal violet (CV) adsorbed on the Au-Ag-Pt-Pd NUs annealed at 200 ℃ is 1.8 times that of the primitive Au-Ag-Pt-Pd NUs at 785 nm excitation. For the Au-Ag-Pt-Pd NUs in this work, the concentration of CV can be detected to be as low as 10–12 M. Furthermore, the interesting NIR-SERS sensor enables the detection limit of H2O2 at low concentration to reach 0.09–1.02 μmol/L. The results show that the obtained nanoalloy has excellent photoelectric response characteristics and high SERS sensitivity due to the synergistic effect of multi-metal. Thus, it possesses great potential for biological NIR detection in the future.
      通信作者: 陈明, chenming@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905115, 11575102)和山东大学基本科研业务费专项资金 (批准号: 2018JC022)资助的课题
      Corresponding author: Chen Ming, chenming@sdu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 11905115, 11575102), and the Fundamental Research Funds of Shandong University, China (Grant No. 2018JC022)
    [1]

    Liang C, Lu Z, Wu J, Chen M, Zhang Y, Zhang B, Gao G, Li S, Xu P 2020 ACS Appl. Mater. Interfaces 12 54266Google Scholar

    [2]

    Zhang Z, Zhang C, Zheng H, Xu H 2019 Acc. Chem. Res. 52 2506Google Scholar

    [3]

    Zheng B Y, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [4]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [5]

    Kang Y, Xue Q, Peng R, Jin P, Zeng J, Jiang J, Chen Y 2017 NPG Asia Mater. 9 e407Google Scholar

    [6]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [7]

    Duchene J S, Niu W, Abendroth J M, Sun Q, Zhao W, Huo F, Wei W D 2013 Chem. Mater. 25 1392Google Scholar

    [8]

    Duchene J S, Almeida R P, Wei W D 2012 Dalton Trans. 41 7879Google Scholar

    [9]

    Wang J, Ma L, Xu J, Xu Y, Sun K, Peng Z 2021 SusMat 1 345Google Scholar

    [10]

    Yaseen T, Pu H, Sun D 2019 Food Anal. Methods 12 2094Google Scholar

    [11]

    Camacho S A, Sobral-Filho R G, Aoki P H B, Constantino C J L, Brolo A G 2018 ACS Sens. 3 587Google Scholar

    [12]

    Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T 2018 Adv. Mater. 30 1702275Google Scholar

    [13]

    Romero-Natale A, Palchetti I, Avelar M, González-Vergara E, Garate-Morales J, Torres E 2019 Water 11 719Google Scholar

    [14]

    刘小红, 姜珊, 常林, 张炜 2020 物理学报 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [15]

    Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725Google Scholar

    [16]

    Bu L, Ding J, Guo S, Zhang X, Su D, Zhu X, Yao J, Guo J, Lu G, Huang X 2015 Adv. Mater. 27 7204Google Scholar

    [17]

    Genç A, Patarroyo J, Sancho-Parramon J, Arenal R, Duchamp M, Gonzalez E E, Henrard L, Bastús N G, Dunin-Borkowski R E, Puntes V F, Arbiol J 2016 ACS Photonics 3 770Google Scholar

    [18]

    Wang X, Ma G, Li A, Yu J, Yang Z, Lin J, Li A, Han X, Guo L 2018 Chem. Sci. 9 4009Google Scholar

    [19]

    Li J, Liu J, Yang Y, Qin D 2015 J. Am. Chem. Soc. 137 7039Google Scholar

    [20]

    He Y, Lu H, Sai L, Su Y, Hu M, Fan C, Huang W, Wang L 2008 Adv. Mater. 20 3416Google Scholar

    [21]

    Malankowska A, Mikolajczyk A, Mędrzycka J O, Wysocka I, Nowaczyk G, Jarek M, Puzyn T, Mulkiewicz E 2020 Environ. Sci. -Nano 7 3557Google Scholar

    [22]

    Bai X, Wang L, Wang Y, Yao W, Zhu Y 2014 Appl. Catal., B 152-153 262Google Scholar

    [23]

    Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H, Chen H Y 2017 ACS Nano 11 5897Google Scholar

    [24]

    Zhang C, Zhao H, Zhou L, Schlather A E, Dong L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [25]

    Swearer D F, Zhao H, Zhou L, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [26]

    Zhang X, Ke X, Yao J 2018 J. Mater. Chem. A 6 1941Google Scholar

    [27]

    Kumar V, O'Donnell S C, Sang D L, Maggard P A, Wang G 2019 Front. Chem. 7 299Google Scholar

    [28]

    Jiang L, Hassan M M, Ali S, Li H, Sheng R, Chen Q 2021 Trends Food Sci. Technol. 112 225Google Scholar

    [29]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [30]

    Ting A S Y, Lee M V J, Chow Y Y, Cheong S L 2016 Water Air Soil Pollut. 227 109Google Scholar

    [31]

    Meng M, Fang Z, Zhang C, Su H, He R, Zhang R, Li H, Li Z, Wu X, Ma C, Zeng J 2016 Nano Lett. 16 3036Google Scholar

    [32]

    Huang C, Valinton J A A, Hung Y, Chen C 2018 Sens. Actuators, B 266 463Google Scholar

    [33]

    Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V, Dominguez R B 2019 Sens. Actuators, B 301 127101Google Scholar

    [34]

    Asadian E, Ghalkhani M, Shahrokhian S 2019 Sens. Actuators, B 293 183Google Scholar

    [35]

    Zhang R, Chen W 2017 Biosens. Bioelectron. 89 249Google Scholar

    [36]

    Yao D, Li C, Liang A, Jiang Z 2019 Spectrochim. Acta, Part A 216 146Google Scholar

    [37]

    Ma J, Feng G, Ying Y, Shao Y, She Y, Zheng L, Abd Ei-Aty A M, Wang J 2021 Analyst 146 956Google Scholar

  • 图 1  (a) 在初始状态下, Au-Ag-Pt-Pd NUs的SEM图像(插图: Au, Ag, Pt和Pd元素分布饼状图, 其中, Au, Ag, Pt和Pd元素比例分别是80.2%, 10.0%, 7.0%和2.8%); (b) 退火200 ℃, Au-Ag-Pt-Pd NUs的高倍SEM图像; 在退火200 ℃情况下, (c)和(d)分别Au-Ag-Pt-Pd NUs的TEM和HRTEM图像; (e)在退火200 ℃情况下, Au-Ag-Pt-Pd NUs的元素映射图像

    Fig. 1.  (a) The SEM image of Au-Ag-Pt-Pd NUs unannealed (inset: the proportions of Au, Ag, Pt and Pd are 80.2%, 10.0%, 7.0% and 2.8%, respectively); (b) the SEM image of Au-Ag-Pt-Pd NUs annealed 200 ℃; (c), (d) the TEM and HRTEM of Au-Ag-Pt-Pd NUs annealed 200 ℃; (e) the element mapping images of Au-Ag-Pt-Pd NUs annealed 200 ℃.

    图 2  (a) Au-Ag-Pt-Pd NUs在不同退火温度下的XRD; (b) Au-Ag-Pt-Pd NUs在不同退火温度下的吸收谱

    Fig. 2.  (a) and (b) are XRD and absorption of Au-Ag-Pt-Pd NUs at different annealing temperatures, respectively.

    图 3  Au, Ag, Pt 和Pd在不同退火温度下的XPS谱图 (a) Au; (b) Ag; (c) Pt; (d) Pd

    Fig. 3.  XPS spectra of (a) Au, (b) Ag, (c) Pt and (d) Pd at different annealing temperatures.

    图 4  (a), (b) 在808 nm激发下, Au-Ag-Pt-Pd NUs不同退火温度的瞬态光电流响应和峰值的柱状图; (c), (d) Au-Ag-Pt-Pd NUs在不同波长激光激发下瞬态光电流响应和峰值的柱状图

    Fig. 4.  (a), (b) The transient photocurrent responses and peak histogram of Au-Ag-Pt-Pd NUs at different annealing temperatures under excitation at 808 nm. (c), (d) the transient photocurrent responses and peak histogram of Au-Ag-Pt-Pd NUs at different wavelengths of laser.

    图 5  (a), (b) 退火200 ℃的Au-Ag-Pt-Pd NUs在808 nm不同激光强度下瞬态光电流响应和强度线性关系图

    Fig. 5.  (a) The transient photocurrent responses of Au-Ag-Pt-Pd NUs annealed 200 ℃ at the different output power of 808 nm laser; (b) the relationship between the output power of 808 nm and current intensity.

    图 6  (a) SERS信号采集示意图. 不同退火温度下, Au-Ag-Pt-Pd NUs的CV(10–7 M)拉曼信号谱图(b)和峰值的柱状图(c). (d) 在退火200 ℃ Au-Ag-Pt-Pd NUs的SERS基底下, 不同浓度CV分子的SERS谱图. (e) 探针分子CV位于1177, 1367, 1587和1615 cm–1特征峰的SERS信号强度与CV分子浓度的线性关系

    Fig. 6.  (a) The SERS system with Au-Ag-Pt-Pd NUs as substrate and 785 nm NIR laser source. (b) SERS signal and (c) peak histogram of CV absorbed on Au-Ag-Pt-Pd NUs at different annealed temperatures. (d) based on the obtained Au-Ag-Pt-Pd NUs annealed 200 ℃, SERS spectra of CV at different concentrations. (e) the relationships between SERS peak intensities at 1177, 1376, 1587 and 1615 cm–1, and the concentration of CV molecules.

    图 7  (a)在不同H2O2浓度下, 探针分子TMB在Au-Ag-Pt-Pd NUs的SERS信号; (b)在1605 cm–1拉曼峰处, H2O2浓度和拉曼信号强度的线性关系

    Fig. 7.  (a) SERS signal of TMB on Au-Ag-Pt-Pd NUs substrate under different concentrations of H2O2; (b) the relationship between SERS signal intensity and the concentration of H2O2 at peak of 1605 cm–1.

  • [1]

    Liang C, Lu Z, Wu J, Chen M, Zhang Y, Zhang B, Gao G, Li S, Xu P 2020 ACS Appl. Mater. Interfaces 12 54266Google Scholar

    [2]

    Zhang Z, Zhang C, Zheng H, Xu H 2019 Acc. Chem. Res. 52 2506Google Scholar

    [3]

    Zheng B Y, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [4]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [5]

    Kang Y, Xue Q, Peng R, Jin P, Zeng J, Jiang J, Chen Y 2017 NPG Asia Mater. 9 e407Google Scholar

    [6]

    Willets K A, Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [7]

    Duchene J S, Niu W, Abendroth J M, Sun Q, Zhao W, Huo F, Wei W D 2013 Chem. Mater. 25 1392Google Scholar

    [8]

    Duchene J S, Almeida R P, Wei W D 2012 Dalton Trans. 41 7879Google Scholar

    [9]

    Wang J, Ma L, Xu J, Xu Y, Sun K, Peng Z 2021 SusMat 1 345Google Scholar

    [10]

    Yaseen T, Pu H, Sun D 2019 Food Anal. Methods 12 2094Google Scholar

    [11]

    Camacho S A, Sobral-Filho R G, Aoki P H B, Constantino C J L, Brolo A G 2018 ACS Sens. 3 587Google Scholar

    [12]

    Qiao X, Su B, Liu C, Song Q, Luo D, Mo G, Wang T 2018 Adv. Mater. 30 1702275Google Scholar

    [13]

    Romero-Natale A, Palchetti I, Avelar M, González-Vergara E, Garate-Morales J, Torres E 2019 Water 11 719Google Scholar

    [14]

    刘小红, 姜珊, 常林, 张炜 2020 物理学报 69 190701Google Scholar

    Liu X H, Jiang S, Chang L, Zhang W 2020 Acta Phys. Sin. 69 190701Google Scholar

    [15]

    Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725Google Scholar

    [16]

    Bu L, Ding J, Guo S, Zhang X, Su D, Zhu X, Yao J, Guo J, Lu G, Huang X 2015 Adv. Mater. 27 7204Google Scholar

    [17]

    Genç A, Patarroyo J, Sancho-Parramon J, Arenal R, Duchamp M, Gonzalez E E, Henrard L, Bastús N G, Dunin-Borkowski R E, Puntes V F, Arbiol J 2016 ACS Photonics 3 770Google Scholar

    [18]

    Wang X, Ma G, Li A, Yu J, Yang Z, Lin J, Li A, Han X, Guo L 2018 Chem. Sci. 9 4009Google Scholar

    [19]

    Li J, Liu J, Yang Y, Qin D 2015 J. Am. Chem. Soc. 137 7039Google Scholar

    [20]

    He Y, Lu H, Sai L, Su Y, Hu M, Fan C, Huang W, Wang L 2008 Adv. Mater. 20 3416Google Scholar

    [21]

    Malankowska A, Mikolajczyk A, Mędrzycka J O, Wysocka I, Nowaczyk G, Jarek M, Puzyn T, Mulkiewicz E 2020 Environ. Sci. -Nano 7 3557Google Scholar

    [22]

    Bai X, Wang L, Wang Y, Yao W, Zhu Y 2014 Appl. Catal., B 152-153 262Google Scholar

    [23]

    Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H, Chen H Y 2017 ACS Nano 11 5897Google Scholar

    [24]

    Zhang C, Zhao H, Zhou L, Schlather A E, Dong L, McClain M J, Swearer D F, Nordlander P, Halas N J 2016 Nano Lett. 16 6677Google Scholar

    [25]

    Swearer D F, Zhao H, Zhou L, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 8916Google Scholar

    [26]

    Zhang X, Ke X, Yao J 2018 J. Mater. Chem. A 6 1941Google Scholar

    [27]

    Kumar V, O'Donnell S C, Sang D L, Maggard P A, Wang G 2019 Front. Chem. 7 299Google Scholar

    [28]

    Jiang L, Hassan M M, Ali S, Li H, Sheng R, Chen Q 2021 Trends Food Sci. Technol. 112 225Google Scholar

    [29]

    Tian Y, Zhang H, Xu L, Chen M, Chen F 2018 Opt. Lett. 43 635Google Scholar

    [30]

    Ting A S Y, Lee M V J, Chow Y Y, Cheong S L 2016 Water Air Soil Pollut. 227 109Google Scholar

    [31]

    Meng M, Fang Z, Zhang C, Su H, He R, Zhang R, Li H, Li Z, Wu X, Ma C, Zeng J 2016 Nano Lett. 16 3036Google Scholar

    [32]

    Huang C, Valinton J A A, Hung Y, Chen C 2018 Sens. Actuators, B 266 463Google Scholar

    [33]

    Aparicio-Martínez E, Ibarra A, Estrada-Moreno I A, Osuna V, Dominguez R B 2019 Sens. Actuators, B 301 127101Google Scholar

    [34]

    Asadian E, Ghalkhani M, Shahrokhian S 2019 Sens. Actuators, B 293 183Google Scholar

    [35]

    Zhang R, Chen W 2017 Biosens. Bioelectron. 89 249Google Scholar

    [36]

    Yao D, Li C, Liang A, Jiang Z 2019 Spectrochim. Acta, Part A 216 146Google Scholar

    [37]

    Ma J, Feng G, Ying Y, Shao Y, She Y, Zheng L, Abd Ei-Aty A M, Wang J 2021 Analyst 146 956Google Scholar

计量
  • 文章访问数:  3446
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 修回日期:  2022-02-06
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回