搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MOF衍生锌钴复合微结构的制备及环己酮气敏性能研究

孙永娇 王世贞 张文磊 王文达 张文栋 胡杰

引用本文:
Citation:

MOF衍生锌钴复合微结构的制备及环己酮气敏性能研究

孙永娇, 王世贞, 张文磊, 王文达, 张文栋, 胡杰

Preparation of zinc cobalt composite microstructures derived from metal-organic-framwork and gas-sensing properties of cyclohexanone

Sun Yong-Jiao, Wang Shi-Zhen, Zhang Wen-Lei, Wang Wen-Da, Zhang Wen-Dong, Hu Jie
PDF
HTML
导出引用
  • 采用溶剂热法制备了MOF衍生纯相ZnO和不同比例的ZnO/Co3O4复合微结构, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、X射线光电子能谱(XPS)和表面积分析仪对所制备微结构的晶体结构、形貌和化学组成进行了分析. 基于上述材料制备气体传感器, 探究传感器对多种不同气体的响应特性. 实验结果表明: 大部分气体传感器在测试温度范围内对环己酮气体的响应值最高, 适量Co3O4复合可以有效提高ZnO微结构对环己酮的检测性能. ZnO/Co3O4复合微结构对环己酮的响应值随Co3O4含量的增加先升高后降低, 在最佳工作温度(250 ℃)下锌钴比例1∶0.1的ZnO/Co3O4传感器对体积分数为100 × 10–6环己酮气体的响应值可达161, 是相同条件下ZnO微结构的6.4倍, 且响应和恢复时间分别为30 s和35 s, 其优异的检测性能主要归因于ZnO和Co3O4之间形成的协同效应. 本文的工作在环己酮气体高性能检测方面有重要的应用价值.
    Metal-organic-framework(MOF)-derived pure ZnO and ZnO/Co3O4 composite microstructures with different ratios are prepared by the sol-vothermal method. The crystalline structure, morphology and chemical composition for each of the prepared micro-structures are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscope (XPS), and surface area analyzer respectively. The Gas sensors based on the as-prepared materials are fabricated and their performances of sensing various gases are investigated. The measurement results show that most of the gas sensors exhibit the highest responses to cyclohexanone gas within the test temperature range, and the composite with an appropriate amount of Co3O4 can obviously promote the cyclohexanoe-sensing property of ZnO microstructure. The response values of ZnO/Co3O4 composite microstructures to cyclohexanone first increase and then decrease with Co3O4 content increasing. The ZnO/Co3O4 composite microstructure sensor with a zinc-to-obalt ratio of 1∶0.1 shows that its value of response to cyclohexanone with a volume fraction of 100 × 10–6 at the optimum working temperature (250 ℃) can arrive at 161, which is 6.4 times higher than that of ZnO microstructure under the same condition. Besides, its response and recovery time are 30 s and 35 s, respectively. This excellent detection performance is attributed mainly to the synergy effect between ZnO and Co3O4. The work has an important application value in the high-performance detection of cyclohexanone.
      通信作者: 胡杰, hujie@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61904122, 62171308)和山西省自然科学基金(批准号: 201901D111090)资助的课题
      Corresponding author: Hu Jie, hujie@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904122, 62171308) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111090)
    [1]

    陈小梅, 陈颖, 袁霞 2021 无机材料学报Google Scholar

    Chen X M, Chen Y, Yuan X 2021 J. Inorg. Mater.Google Scholar

    [2]

    王志峰 2013 中国化工贸易 5 127Google Scholar

    Wang Z F 2013 China Chem. Trade 5 127Google Scholar

    [3]

    Li Z 2018 Chemosensors 6 34Google Scholar

    [4]

    Grazier K M, Swager T M 2013 Anal. Chem. 85 7154Google Scholar

    [5]

    Ong C N, Sia G L, Chia S E 1991 J. Anal. Toxicl. 15 13Google Scholar

    [6]

    Deelder R S, Hendricks P J H 1973 J. Chromatogr. A 83 343Google Scholar

    [7]

    Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R 1999 Sens. Actuators B:Chem. 59 195Google Scholar

    [8]

    Gardon M, Guilemany J M 2013 J. Mater. Sci:Mater. Electron. 24 1410Google Scholar

    [9]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36Google Scholar

    [10]

    Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S 2012 Sensors 12 9635Google Scholar

    [11]

    Katoch A, Abideen Z U, Kim J H, Kim S S 2016 Sens. Actuators B:Chem. 232 698Google Scholar

    [12]

    Yi G C, Wang C, Park W I 2005 Semicond. Sci. Tech. 20 S22Google Scholar

    [13]

    Meng D, Liu D Y, Wang G S, Shen B, San Y B, Si J P, Meng F L 2019 Appl. Surf. Sci. 463 348Google Scholar

    [14]

    Zhou T T, Zhang T 2021 Small Methods 5 2100515Google Scholar

    [15]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374Google Scholar

    [16]

    Koo A, Yoo R, Woo S P, Lee H S, Lee W Y 2019 Sens. Actuators B: Chem. 280 109Google Scholar

    [17]

    Qi T, Yang X, Sun J 2019 Sens. Actuators B:Chem. 283 93Google Scholar

    [18]

    Lee C S, Dai Z F, Jeong S Y, Kwak C H, Kim B Y, Kim D H, Jang H W, Park J S, Lee J H 2016 Chem. Eur. J. 22 7102Google Scholar

    [19]

    Nie S, Dastan D, Li J, Zhou W D, Wu S S, Zhou Y W, Yin X T 2021 J. Phys. Chem. Solid 150 109864Google Scholar

    [20]

    Li B, Liu J Y, Liu Q, Chen R R, Zhang H S, Yu J, Song D L, Li J Q, Zhang M L, Wang J 2019 Appl. Surf. Sci. 475 700Google Scholar

    [21]

    Xiong Y, Liu W D, Qiao X R, Song X J, Wang S C, Zhang X L, Wang X Z, Tian J 2021 Sens. Actuators B: Chem. 346 130486Google Scholar

    [22]

    Bai S L, Guo J, Xiang X, Luo R X, Li D Q, Chen A F, Liu C C 2017 Sens. Actuators B: Chem. 245 359Google Scholar

    [23]

    Shingange K, Tshbalala Z P, Nteaeaborwa O M, Motaung D E, Mhlongo G H 2016 J. Colloid Interf. Sci. 479 127Google Scholar

    [24]

    Yun S, Lee J, Chung J, Lim S 2010 J. Phys. Chem. Solid 71 1724Google Scholar

    [25]

    Jing H Y, Song X D, Ren S Z, Shi Y T, An Y L, Yang Y, Feng M Q, Ma S B, Hao C 2016 Electrochim. Acta 213 252Google Scholar

    [26]

    Sakai G, Matsunaga N, Shimanoe K, Yamzoe N 2001 Sens. Actuators B 80 125Google Scholar

    [27]

    Suematsu K, Shin Y, Hua Z Q, Yoshida K, Yuasa M, Kida T, Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319Google Scholar

    [28]

    Kida T, Kuroiwa T, Yuasa M, Shimanoe K, Yamazoe N 2008 Sens. Actuators B:Chem. 134 928Google Scholar

    [29]

    Ahn M W, Park K S, Heo J H, Kim D W, Choi K J, Park J G 2009 Sens. Actuators B:Chem. 138 168Google Scholar

    [30]

    Scott R W J, Yang S M, Chabanis G, Coombs N, Williams D E, Ozin G A 2001 Adv. Mater. 13 1468Google Scholar

    [31]

    Liu L, Li S C, Zhuang J, Wang L Y, Zhang J B, Li H Y, Liu Z, Han Y, Jiang X X, Zhang P 2011 Sens. Actuators B: Chem. 155 728

    [32]

    Sahay P P, Nath R K 2008 Sens. Actuators B: Chem. 133 222Google Scholar

    [33]

    Zhou T T, Zhang T, Deng J N, Zhang R, Lou Z, Wang L L 2017 Sens. Actuators B: Chem. 242 369Google Scholar

    [34]

    Doan T L H, Kim J Y, Lee J H, Nguyen L H T, Dang Y T, Bui K B T, Pham A T T, Mirzaei A, Phan T B, Kim S S 2021 Sens. Actuators B: Chem. 348 130684Google Scholar

    [35]

    Kim H R, Haensch A, Kim II D, Barsan N, Weimar U, Lee J H 2011 Adv. Funct. Mater. 21 4456Google Scholar

  • 图 1  ZnO和ZnO/Co3O4复合微结构的XRD图谱

    Fig. 1.  XRD patterns of ZnO and ZnO/Co3O4 composite microstructures.

    图 2  (a) ZnO, (b) Zn1Co0.05, (c) Zn1Co0.1, (d) Zn1Co0.2和(e) Zn1Co1复合微结构的SEM图和(f) Zn1Co0.1的EDS图谱

    Fig. 2.  SEM images of (a) ZnO, (b) Zn1Co0.05, (c) Zn1Co0.1, (d) Zn1Co0.2 and (e) Zn1Co1 composite microstructures and EDS patterns of (f) Zn1Co0.1.

    图 3  Zn1Co0.1复合微结构的氮吸附-脱附等温曲线与孔径分布曲线(插图)

    Fig. 3.  Nitrogen adsorption-desorption isotherm and pore-size distribution curve (inset) of Zn1Co0.1 composite microstructure.

    图 4  Zn1Co0.1复合微结构的XPS图谱(a), Zn 2p (b), O 1s (c)和Co 2p (d)

    Fig. 4.  XPS spectra of Zn1Co0.1 composite microstructure (a), Zn 2p (b), O 1s (c) and Co 2p (d).

    图 5  (a)—(e)ZnO和ZnO/Co3O4复合微结构的在不同温度下对7种体积分数为100 × 10–6不同气体的响应值, (f)在不同温度下对体积分数为100 × 10–6环己酮气体的响应曲线

    Fig. 5.  (a)–(e) Response vaules of ZnO and ZnO/Co3O4 composite microstructures to 100 × 10–6 (volume fraction) 7 kinds of different gases at different temperatures, and (f) response curves to 100 × 10–6 (volume fraction) cyclohexanone gas at different temperatures.

    图 6  ZnO和ZnO/Co3O4复合微结构的在250 ℃时对体积分数为100 × 10–6环己酮气体的响应恢复曲线

    Fig. 6.  Response-recovery curves of ZnO and ZnO/Co3O4 composite microstructures to 100 × 10–6 (volume fraction) cyclohexanone at 250 ℃.

    图 7  (a) ZnO和ZnO/Co3O4复合微结构在250 ℃时对不同浓度环己酮气体的响应恢复曲线, (b)传感器响应-环己酮浓度关系及(c)其对数形式关系

    Fig. 7.  (a) Response-recovery curves of ZnO and ZnO/Co3O4 composite microstructures to various concentration of cyclohexanone at 250 ℃; (b) the relationship curves of the responses-cyclohexanone concentrations and (c) relationship in logarithm form.

    图 8  ZnO/Co3O4复合微结构在(a)空气中和(b)环己酮气体中的能带示意图

    Fig. 8.  The energy band diagrams of ZnO/Co3O4 composite microstructures (a) in air and (b) in cyclohexanone.

  • [1]

    陈小梅, 陈颖, 袁霞 2021 无机材料学报Google Scholar

    Chen X M, Chen Y, Yuan X 2021 J. Inorg. Mater.Google Scholar

    [2]

    王志峰 2013 中国化工贸易 5 127Google Scholar

    Wang Z F 2013 China Chem. Trade 5 127Google Scholar

    [3]

    Li Z 2018 Chemosensors 6 34Google Scholar

    [4]

    Grazier K M, Swager T M 2013 Anal. Chem. 85 7154Google Scholar

    [5]

    Ong C N, Sia G L, Chia S E 1991 J. Anal. Toxicl. 15 13Google Scholar

    [6]

    Deelder R S, Hendricks P J H 1973 J. Chromatogr. A 83 343Google Scholar

    [7]

    Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R 1999 Sens. Actuators B:Chem. 59 195Google Scholar

    [8]

    Gardon M, Guilemany J M 2013 J. Mater. Sci:Mater. Electron. 24 1410Google Scholar

    [9]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36Google Scholar

    [10]

    Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S 2012 Sensors 12 9635Google Scholar

    [11]

    Katoch A, Abideen Z U, Kim J H, Kim S S 2016 Sens. Actuators B:Chem. 232 698Google Scholar

    [12]

    Yi G C, Wang C, Park W I 2005 Semicond. Sci. Tech. 20 S22Google Scholar

    [13]

    Meng D, Liu D Y, Wang G S, Shen B, San Y B, Si J P, Meng F L 2019 Appl. Surf. Sci. 463 348Google Scholar

    [14]

    Zhou T T, Zhang T 2021 Small Methods 5 2100515Google Scholar

    [15]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374Google Scholar

    [16]

    Koo A, Yoo R, Woo S P, Lee H S, Lee W Y 2019 Sens. Actuators B: Chem. 280 109Google Scholar

    [17]

    Qi T, Yang X, Sun J 2019 Sens. Actuators B:Chem. 283 93Google Scholar

    [18]

    Lee C S, Dai Z F, Jeong S Y, Kwak C H, Kim B Y, Kim D H, Jang H W, Park J S, Lee J H 2016 Chem. Eur. J. 22 7102Google Scholar

    [19]

    Nie S, Dastan D, Li J, Zhou W D, Wu S S, Zhou Y W, Yin X T 2021 J. Phys. Chem. Solid 150 109864Google Scholar

    [20]

    Li B, Liu J Y, Liu Q, Chen R R, Zhang H S, Yu J, Song D L, Li J Q, Zhang M L, Wang J 2019 Appl. Surf. Sci. 475 700Google Scholar

    [21]

    Xiong Y, Liu W D, Qiao X R, Song X J, Wang S C, Zhang X L, Wang X Z, Tian J 2021 Sens. Actuators B: Chem. 346 130486Google Scholar

    [22]

    Bai S L, Guo J, Xiang X, Luo R X, Li D Q, Chen A F, Liu C C 2017 Sens. Actuators B: Chem. 245 359Google Scholar

    [23]

    Shingange K, Tshbalala Z P, Nteaeaborwa O M, Motaung D E, Mhlongo G H 2016 J. Colloid Interf. Sci. 479 127Google Scholar

    [24]

    Yun S, Lee J, Chung J, Lim S 2010 J. Phys. Chem. Solid 71 1724Google Scholar

    [25]

    Jing H Y, Song X D, Ren S Z, Shi Y T, An Y L, Yang Y, Feng M Q, Ma S B, Hao C 2016 Electrochim. Acta 213 252Google Scholar

    [26]

    Sakai G, Matsunaga N, Shimanoe K, Yamzoe N 2001 Sens. Actuators B 80 125Google Scholar

    [27]

    Suematsu K, Shin Y, Hua Z Q, Yoshida K, Yuasa M, Kida T, Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319Google Scholar

    [28]

    Kida T, Kuroiwa T, Yuasa M, Shimanoe K, Yamazoe N 2008 Sens. Actuators B:Chem. 134 928Google Scholar

    [29]

    Ahn M W, Park K S, Heo J H, Kim D W, Choi K J, Park J G 2009 Sens. Actuators B:Chem. 138 168Google Scholar

    [30]

    Scott R W J, Yang S M, Chabanis G, Coombs N, Williams D E, Ozin G A 2001 Adv. Mater. 13 1468Google Scholar

    [31]

    Liu L, Li S C, Zhuang J, Wang L Y, Zhang J B, Li H Y, Liu Z, Han Y, Jiang X X, Zhang P 2011 Sens. Actuators B: Chem. 155 728

    [32]

    Sahay P P, Nath R K 2008 Sens. Actuators B: Chem. 133 222Google Scholar

    [33]

    Zhou T T, Zhang T, Deng J N, Zhang R, Lou Z, Wang L L 2017 Sens. Actuators B: Chem. 242 369Google Scholar

    [34]

    Doan T L H, Kim J Y, Lee J H, Nguyen L H T, Dang Y T, Bui K B T, Pham A T T, Mirzaei A, Phan T B, Kim S S 2021 Sens. Actuators B: Chem. 348 130684Google Scholar

    [35]

    Kim H R, Haensch A, Kim II D, Barsan N, Weimar U, Lee J H 2011 Adv. Funct. Mater. 21 4456Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 葛一璇, 于婷婷, 梁文杰. 原位合成方法制备超灵敏和高特异性的微型氢气传感器. 物理学报, 2024, 73(2): 020701. doi: 10.7498/aps.73.20231265
    [3] 毕文杰, 杨爽, 周静, 金伟, 陈文. Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究. 物理学报, 2023, 72(16): 168103. doi: 10.7498/aps.72.20230720
    [4] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [5] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [6] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [7] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [8] 徐强, 段康, 谢浩, 张秦蓉, 梁本权, 彭祯凯, 李卫. 基于第一性原理的二维材料黑磷砷气体传感器的机理研究. 物理学报, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [9] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [10] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展. 物理学报, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [11] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [12] 孙小亮, 陈长虹, 孟德佳, 冯士高, 于洪浩. 复合金属光栅模式分离与高性能气体传感器应用. 物理学报, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [13] 薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅. 多孔ZnO微米球的制备及其优异的丙酮敏感特性. 物理学报, 2014, 63(17): 176803. doi: 10.7498/aps.63.176803
    [14] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [15] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究. 物理学报, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [16] 张晓星, 孟凡生, 唐炬, 杨冰. 羟基碳纳米管吸附SF6放电分解组分的DFT计算. 物理学报, 2012, 61(15): 156101. doi: 10.7498/aps.61.156101
    [17] 秦玉香, 王飞, 沈万江, 胡明. 氧化钨纳米线-单壁碳纳米管复合型气敏元件的室温NO2敏感性能与机理. 物理学报, 2012, 61(5): 057301. doi: 10.7498/aps.61.057301
    [18] 王马华, 朱汉青, 朱光平. 水热法制备注射器样纳米氧化锌场发射特性的研究. 物理学报, 2011, 60(7): 077305. doi: 10.7498/aps.60.077305
    [19] 陈静, 金国钧, 马余强. 氧空位对钴掺杂氧化锌半导体磁性能的影响. 物理学报, 2009, 58(4): 2707-2712. doi: 10.7498/aps.58.2707
    [20] 林志贤, 郭太良, 胡利勤, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 四角状氧化锌纳米材料的场致发射平板显示器. 物理学报, 2006, 55(10): 5531-5534. doi: 10.7498/aps.55.5531
计量
  • 文章访问数:  3141
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2022-01-13
  • 上网日期:  2022-02-16
  • 刊出日期:  2022-05-20

/

返回文章
返回