搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟

夏文强 赵彦 刘振智 鲁晓刚

引用本文:
Citation:

应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟

夏文强, 赵彦, 刘振智, 鲁晓刚

Phase field crystal simulation of strain-induced square phase low-angle symmetric tilt grain boundary dislocation reaction

Xia Wen-Qiang, Zhao Yan, Liu Zhen-Zhi, Lu Xiao-Gang
PDF
HTML
导出引用
  • 采用晶体相场法研究了外加应变作用下, 不同取向差的四方相对称倾侧小角度晶界的位错运动与反应及反应过程中的位错组态, 通过采用几何相位法对位错周围应变场进行了表征. 结果表明, 凝固弛豫达到稳态后, 晶界两侧位错平行且方向相反, 随晶界两侧晶粒取向差增大, 位错数目增加, 距离减小, 且体系自由能增加. 在外加应变作用下, 晶界位错经历攀移、发射、反应湮灭等阶段, 体系自由能呈现波动. 当取向差增大时, 位错运动方式由攀移向攀滑移转变, 产生更多类型的位错组构型, 并发生相应的位错与位错组之间的反应. 对于不同构型的位错反应, 正切应变驱动位错靠近, 负切应变驱动位错湮灭.
    In this paper, the phase field crystal method is used to study the dislocation motion and reaction of the square phase symmetric tilt low-angle grain boundaries, and the dislocation configurations with different misorientation angles are analyzed under the action of applied strain. The geometric phase approach is used to characterize the strain field around the dislocations. The results show that after the solidification relaxation, the interfacial dislocations on both sides of the grain are distributed in parallel but opposite direction. With the increase of misorientation angle between grains, the number of dislocations increases, the spacing between them decreases, and the free energy of the system increases. Imposed by the applied strain, the grain boundary dislocations undergo climbing, launching, and reactive annihilation, with the free energy fluctuating. When the misorientation increases, the dislocation motion mode changes from climbing to climbing-sliping, resulting in more dislocation group configurations, and more reactions between dislocations and dislocation groups. For the dislocation reactions of different configurations, positive shear strain drives dislocations to approach, and negative shear strain drives dislocations to annihilate.
      通信作者: 赵彦, zhaoyan8626@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51771226)资助的课题
      Corresponding author: Zhao Yan, zhaoyan8626@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51771226)
    [1]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [2]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

    [3]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107Google Scholar

    [4]

    高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507Google Scholar

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507Google Scholar

    [5]

    Yang T, Gao Y, Wang D, Shi R P, Chen Z, Nie J F, Li J, Wang Y 2017 Acta Mater. 127 481Google Scholar

    [6]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601Google Scholar

    [7]

    Gao Y J, Deng Q Q, Liu Z Y, Huang Z J, Li Y X, Luo Z R 2020 J. Mater. Sci. Technol. 49 236Google Scholar

    [8]

    Gao Y J, Huang L L, Deng Q Q, Zhou W Q, Luo Z R, Lin K 2016 Acta Mater. 117 238Google Scholar

    [9]

    赵宇龙, 陈铮, 龙建, 杨涛 2013 物理学报 62 118102Google Scholar

    Zhao Y L, Chen Z, Long J, Yang T 2013 Acta Phys. Sin. 62 118102Google Scholar

    [10]

    赵宇龙, 陈铮, 龙建, 杨涛 2014 金属学报 27 81Google Scholar

    Zhao Y L, Chen Z, Long J, Yang T 2014 Acta Metall. Sin. 27 81Google Scholar

    [11]

    Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G, Lin K 2016 Modell. Simul. Mater. Sci. 24 055010Google Scholar

    [12]

    Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar

    [13]

    Seymour M, Sanches F, Elder K, Provatas N 2015 Phys. Rev. B 92 184109Google Scholar

    [14]

    Faghihi N, Provatas N, Elder K R, Grant M, Karttunen M 2013 Phys. Rev. E 88 032407Google Scholar

    [15]

    Berghoff M, Nestler B 2015 Comput. Condens. Matter 4 46Google Scholar

    [16]

    Tang S, Wang Z J, Guo Y L, et al. 2012 Acta Mater. 60 5501Google Scholar

    [17]

    高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110Google Scholar

    Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110Google Scholar

    [18]

    Hu S, Chen Z, Yu G G, Xi W, Peng Y Y 2016 Comput. Mater. Sci. 124 195Google Scholar

    [19]

    Gutkin M Y, Ovid'ko I A 2001 Phys. Rev. B 63 064515Google Scholar

    [20]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107Google Scholar

    [21]

    Bobylev S V, Gutkin M Y, Ovid'ko I A 2004 Phys. Solid State 46 2053Google Scholar

    [22]

    Ohno T, Ii S, Shibata N, Matsunaga K, Ikuhara Y, Yamamoto T 2004 Mater. Trans. 45 2117Google Scholar

    [23]

    Humphreys F J 2001 J. Mater. Sci. 36 3833Google Scholar

    [24]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar

    [25]

    龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 物理学报 62 218101Google Scholar

    Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101Google Scholar

    [26]

    鲁娜, 王永欣, 陈铮 2014 物理学报 63 180508Google Scholar

    Lu N, Wang Y X, Chen Z 2014 Acta Phys. Sin. 63 180508Google Scholar

    [27]

    杨涛, 陈铮, 董伟平 2011 金属学报 47 1301Google Scholar

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301Google Scholar

    [28]

    Berkels B, Ratz A, Rumpf M, Voigt A 2008 J. Sci. Comput. 35 1Google Scholar

    [29]

    Elsey M, Wirth B 2014 Multiscale Model. Sim. 12 1Google Scholar

    [30]

    Singer H M, Singer I 2006 Phys. Rev. E 74 031103Google Scholar

    [31]

    Wang Z J, Li J J, Guo Y L, Tang S, Wang J C 2013 Comput. Phys. Commun. 184 2489Google Scholar

    [32]

    Hytch M J, Snoeck E, Kilaas R 1998 Ultramicroscopy 74 131Google Scholar

    [33]

    Galindo P L, Kret S, Sanchez A M, et al. 2007 Ultramicroscopy 107 1186Google Scholar

    [34]

    Hytch M J, Putaux J L, Penisson J M 2003 Nature 423 270Google Scholar

    [35]

    Guo Y, Wang J, Wang Z, Li J, Tang S, Liu F, Zhou Y 2015 Philos. Mag. 95 973Google Scholar

    [36]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601Google Scholar

    [37]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

  • 图 1  二维四方相相图(黑色部分为两相共存区)

    Fig. 1.  Phase diagram of the two-dimensional square lattices (the black part is the two-phase coexistence region).

    图 2  $ \theta ={4} $°时双晶弛豫过程的模拟 (a) t = 100; (b) t = 1300; (c) t = 1700; (d) t = 30000

    Fig. 2.  Simulation of the relaxation process of bicrystals with $ \theta ={4} $°: (a) t = 100; (b) t = 1300; (c) t = 1700; (d) t = 30000.

    图 3  不同取向差对应的位错构型、位错数目与位错间距

    Fig. 3.  Dislocation configuration, number of dislocations and dislocation distance corresponding to different misorientations.

    图 4  取向差对弛豫过程体系自由能变化的影响

    Fig. 4.  Effect of misorientations on the change of free energy during relaxation process.

    图 5  不同取向差下晶界处$ {\varepsilon }_{xx} $应变云图 (a)$ \theta ={4} $°; (b)$ \theta ={6} $°; (c) $ \theta ={8} $°

    Fig. 5.  Contours of $ {\varepsilon }_{xx} $ strain at the grain boundary under different misorientations: (a)$ \theta ={4} $°; (b)$ \theta ={6} $°; (c) $ \theta ={8} $°.

    图 6  应变作用下$ \theta ={4} $°时晶界位错运动模拟图 (a) t = 50; (b) t = 14150; (c) t = 15250; (d) t = 17550; (e) t = 29100; (f) t = 48500. 图6(a)中插图(g)和(h)分别表示刃位错的类型和位错对应的伯氏矢量类型

    Fig. 6.  Simulation of grain boundary dislocation motion under strain with $ \theta ={4} $°: (a) t = 50; (b) t = 14150; (c) t = 15250; (d) t = 17550; (e) t = 29100; (f) t = 48500. Inset (g) and (h) represent the type of edge dislocation and the Burgers vector type respectively corresponding to the dislocation in Fig. 6(a).

    图 7  应变作用下$ \theta ={6} $°时晶界位错运动模拟图 (a) t = 50; (b) t = 15000; (c) t = 16350; (d) t = 19550; (e) t = 23500; (f) t = 26950

    Fig. 7.  Simulation of grain boundary dislocation motion under strain with $ \theta ={6} $°: (a) t = 50; (b) t = 15000; (c) t = 16350; (d) t = 19550; (e) t = 23500; (f) t = 26950.

    图 8  应变作用下$ \theta ={8} $°时晶界位错运动模拟图 (a) t = 100; (b) t = 16350; (c) t = 17500; (d) t = 20400; (e) t = 25000; (f) t = 34750

    Fig. 8.  Simulation of grain boundary dislocation motion under strain with $ \theta ={8} $°: (a) t = 100; (b) t = 16350; (c) t = 17500; (d) t = 20400; (e) t = 25000; (f) t = 34750.

    图 9  不同取向差下体系自由能变化曲线 (a) $ \theta ={4}$°; (b) $ \theta ={6} $°; (c) $ \theta ={8} $°

    Fig. 9.  Variations of free energy under different misorientations: (a) $ \theta ={4} $°; (b) $ \theta ={6} $°; (c) $ \theta ={8} $°.

    图 10  含位错组的晶体位错构型及对应的不同应变取向应变云图 (a) 晶体构型图; (b) ${\varepsilon }_{xx}$; (c) ${\varepsilon }_{xy}$; (d) ${\varepsilon }_{yy}$

    Fig. 10.  Dislocation configuration of crystals containing dislocation groups and corresponding strain contours of different strain orientations: (a) Crystal configuration diagram; (b) ${\varepsilon }_{xx}$; (c) ${\varepsilon }_{xy}$; (d) ${\varepsilon }_{yy}$.

    图 11  不同位错反应构型的演化图 (a)—(d) R1构型; (e)—(h) R2构型; (i)—(l) R3构型; (m)—(p) R4构型; (q)—(t) R5构型

    Fig. 11.  Evolution of different dislocation reaction configurations: (a)–(d) R1 configurations; (e)–(h) R2 configurations; (i)–(l) R3 configurations; (m)–(p) R4 configurations; (q)–(t) R5 configurations.

    图 12  不同位错反应构型演化时应变(${\varepsilon }_{xy}$)云图 (a)—(d) R1构型; (e)—(h) R2构型; (i)—(l) R3构型; (m)—(p) R4构型; (q)—(t) R5构型

    Fig. 12.  Strain (${\varepsilon }_{xy}$) contours during the evolution of different dislocation reaction configurations: (a)–(d) R1 configuration; (e)–(h) R2 configuration; (i)–(l) R3 configuration; (m)–(p) R4 configuration; (q)–(t) R5 configuration.

    表 1  模拟设定的参数

    Table 1.  Parameters in the simulation.

    方案初始原子密度$ {\overline \psi _0} $温度相关参量ε取向差θ
    A$-0.40$$ 0.45 $$ {4} $°
    B$-0.40$$ 0.45 $$ {6} $°
    C$-0.40$$ 0.45 $$ {8} $°
    下载: 导出CSV

    表 2  不同构型的位错分解发射与位错反应

    Table 2.  Dislocation decomposition and dislocation reaction of different configuration.

    编号位错分解发射编号位错反应
    L1$n1\xrightarrow{\text{分解}}n1+n3+n4$R1$ n3+n4\xrightarrow{\text{反应}} 0 $
    $ n2 \xrightarrow{\text{分解}} n2+n3+n4 $R2$n1+\overline{n2 n4}\xrightarrow{\text{反应} }n4,$
    $n2+\overline{n2 n3}\xrightarrow{\text{反应}}n4$
    L2$n1\xrightarrow{\text{分解}}\overline{n1 n3}+n4$R3$n3+\overline{n2 n4}\xrightarrow{\text{反应} }n2,$
    $n4+\overline{n1 n3}\xrightarrow{\text{反应}}n1$
    $n2\xrightarrow{\text{分解}}\overline{n2 n3}+n4$R4$\overline{n1 n3}+\overline{n2 n4}\xrightarrow{\text{反应} }0,$
    $\overline{n1 n4}+\overline{n2 n3}\xrightarrow{\text{反应}}0$
    L3$n1\xrightarrow{\text{分解}}\overline{n1 n4}+n3$R5$ n1+n2\xrightarrow{\text{反应}}0 $
    $n2\xrightarrow{\text{分解}}\overline{n2 n4}+n3$
    下载: 导出CSV
  • [1]

    Elder K R, Katakowski M, Haataja M, Grant M 2002 Phys. Rev. Lett. 88 245701Google Scholar

    [2]

    Elder K R, Grant M 2004 Phys. Rev. E 70 051605Google Scholar

    [3]

    Elder K R, Provatas N, Berry J, Stefanovic P, Grant M 2007 Phys. Rev. B 75 064107Google Scholar

    [4]

    高英俊, 罗志荣, 黄创高, 卢强华, 林葵 2013 物理学报 62 050507Google Scholar

    Gao Y J, Luo Z R, Huang C G, Lu Q H, Lin K 2013 Acta Phys. Sin. 62 050507Google Scholar

    [5]

    Yang T, Gao Y, Wang D, Shi R P, Chen Z, Nie J F, Li J, Wang Y 2017 Acta Mater. 127 481Google Scholar

    [6]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601Google Scholar

    [7]

    Gao Y J, Deng Q Q, Liu Z Y, Huang Z J, Li Y X, Luo Z R 2020 J. Mater. Sci. Technol. 49 236Google Scholar

    [8]

    Gao Y J, Huang L L, Deng Q Q, Zhou W Q, Luo Z R, Lin K 2016 Acta Mater. 117 238Google Scholar

    [9]

    赵宇龙, 陈铮, 龙建, 杨涛 2013 物理学报 62 118102Google Scholar

    Zhao Y L, Chen Z, Long J, Yang T 2013 Acta Phys. Sin. 62 118102Google Scholar

    [10]

    赵宇龙, 陈铮, 龙建, 杨涛 2014 金属学报 27 81Google Scholar

    Zhao Y L, Chen Z, Long J, Yang T 2014 Acta Metall. Sin. 27 81Google Scholar

    [11]

    Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G, Lin K 2016 Modell. Simul. Mater. Sci. 24 055010Google Scholar

    [12]

    Hu S, Chen Z, Xi W, Peng Y Y 2017 J. Mater. Sci. 52 5641Google Scholar

    [13]

    Seymour M, Sanches F, Elder K, Provatas N 2015 Phys. Rev. B 92 184109Google Scholar

    [14]

    Faghihi N, Provatas N, Elder K R, Grant M, Karttunen M 2013 Phys. Rev. E 88 032407Google Scholar

    [15]

    Berghoff M, Nestler B 2015 Comput. Condens. Matter 4 46Google Scholar

    [16]

    Tang S, Wang Z J, Guo Y L, et al. 2012 Acta Mater. 60 5501Google Scholar

    [17]

    高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高 2014 金属学报 50 110Google Scholar

    Gao Y J, Lu C J, Huang L L, Luo Z R, Huang C G 2014 Acta Metall. Sin. 50 110Google Scholar

    [18]

    Hu S, Chen Z, Yu G G, Xi W, Peng Y Y 2016 Comput. Mater. Sci. 124 195Google Scholar

    [19]

    Gutkin M Y, Ovid'ko I A 2001 Phys. Rev. B 63 064515Google Scholar

    [20]

    Stefanovic P, Haataja M, Provatas N 2009 Phys. Rev. E 80 046107Google Scholar

    [21]

    Bobylev S V, Gutkin M Y, Ovid'ko I A 2004 Phys. Solid State 46 2053Google Scholar

    [22]

    Ohno T, Ii S, Shibata N, Matsunaga K, Ikuhara Y, Yamamoto T 2004 Mater. Trans. 45 2117Google Scholar

    [23]

    Humphreys F J 2001 J. Mater. Sci. 36 3833Google Scholar

    [24]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192Google Scholar

    [25]

    龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮 2013 物理学报 62 218101Google Scholar

    Long J, Wang Z Y, Zhao Y L, Long Q H, Yang T, Chen Z 2013 Acta Phys. Sin. 62 218101Google Scholar

    [26]

    鲁娜, 王永欣, 陈铮 2014 物理学报 63 180508Google Scholar

    Lu N, Wang Y X, Chen Z 2014 Acta Phys. Sin. 63 180508Google Scholar

    [27]

    杨涛, 陈铮, 董伟平 2011 金属学报 47 1301Google Scholar

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301Google Scholar

    [28]

    Berkels B, Ratz A, Rumpf M, Voigt A 2008 J. Sci. Comput. 35 1Google Scholar

    [29]

    Elsey M, Wirth B 2014 Multiscale Model. Sim. 12 1Google Scholar

    [30]

    Singer H M, Singer I 2006 Phys. Rev. E 74 031103Google Scholar

    [31]

    Wang Z J, Li J J, Guo Y L, Tang S, Wang J C 2013 Comput. Phys. Commun. 184 2489Google Scholar

    [32]

    Hytch M J, Snoeck E, Kilaas R 1998 Ultramicroscopy 74 131Google Scholar

    [33]

    Galindo P L, Kret S, Sanchez A M, et al. 2007 Ultramicroscopy 107 1186Google Scholar

    [34]

    Hytch M J, Putaux J L, Penisson J M 2003 Nature 423 270Google Scholar

    [35]

    Guo Y, Wang J, Wang Z, Li J, Tang S, Liu F, Zhou Y 2015 Philos. Mag. 95 973Google Scholar

    [36]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601Google Scholar

    [37]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): 248101. doi: 10.7498/aps.73.20241368
    [2] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [3] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [4] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [5] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [6] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [7] 何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平. 基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析. 物理学报, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [8] 臧航, 黄智晟, 李涛, 郭荣明. 单晶六方SiC和多晶化学气相沉积SiC的常温辐照肿胀差异性. 物理学报, 2017, 66(6): 066104. doi: 10.7498/aps.66.066104
    [9] 郭刘洋, 陈铮, 龙建, 杨涛. 晶体相场法研究应力状态及晶体取向对微裂纹尖端扩展行为的影响. 物理学报, 2015, 64(17): 178102. doi: 10.7498/aps.64.178102
    [10] 李威, 陈长水, 韦俊雄, 韩田, 刘颂豪. 激光陶瓷晶体最佳掺杂浓度的理论研究. 物理学报, 2014, 63(8): 087801. doi: 10.7498/aps.63.087801
    [11] 鲁娜, 王永欣, 陈铮. 非对称倾侧亚晶界的晶体相场法研究. 物理学报, 2014, 63(18): 180508. doi: 10.7498/aps.63.180508
    [12] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变. 物理学报, 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [13] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [14] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [15] 龙建, 王诏玉, 赵宇龙, 龙清华, 杨涛, 陈铮. 不同对称性下晶界结构演化及微观机理的晶体相场法研究. 物理学报, 2013, 62(21): 218101. doi: 10.7498/aps.62.218101
    [16] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [17] 邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛. 三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究. 物理学报, 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [18] 陈成, 陈铮, 张静, 杨涛. 晶体相场法模拟异质外延过程中界面形态演化与晶向倾侧. 物理学报, 2012, 61(10): 108103. doi: 10.7498/aps.61.108103
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究. 物理学报, 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
计量
  • 文章访问数:  4685
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-01-04
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回