搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性磁性薄膜材料与器件研究进展

杨华礼 谢亚丽 芦增星 汪志明 李润伟

引用本文:
Citation:

柔性磁性薄膜材料与器件研究进展

杨华礼, 谢亚丽, 芦增星, 汪志明, 李润伟

Research progress of flexible magnetic films and devices

Yang Hua-Li, Xie Ya-Li, Lu Zeng-Xing, Wang Zhi-Ming, Li Run-Wei
PDF
HTML
导出引用
  • 近年来, 随着物联网、仿生机器人、移动式医疗健康等领域的兴起, 柔性电子材料和器件受到广泛关注. 基于磁性材料构建的传感器和存储器是电子器件的重要组成部分. 随着柔性薄膜材料制备技术的发展, 人们已经制备出高质量的柔性乃至可拉伸的磁性金属和氧化物薄膜, 它们展现的不仅是更强的变形能力, 还有新的物理效应与响应规律. 研究结果表明, 柔性磁电子器件在非接触传感、高灵敏应变探测、超分辨触觉感知等方面展现出独特的优势, 具有广阔的应用前景. 本文主要从柔性磁性材料的制备、物性调控规律和器件应用方面综述这一新兴领域的发展动态, 并对其未来的发展趋势进行展望.
    With the rise of the internet of things, humanoid robots, and mobile healthcare services, etc., flexible electronic materials and devices have received extensive attention. Sensors and memories based on magnetic materials are important components of electronic devices. With the development of flexible film material preparation technology, one has prepared high-quality flexible and even stretchable magnetic metal and oxide films, which exhibit not only greater deformation capability, but also new physical effects and responses. Most recent studies show that flexible magnetoelectronic devices are advantageous in non-contact sensing, highly sensitive strain detection, and super-resolution tactile sensing, showing their broad application prospects. In this work, the research progress of this emerging field is reviewed from the aspects of the preparation of flexible magnetic materials, the regulation of physical properties and the applications of devices, and the future development trend is also presented.
      通信作者: 李润伟, runweili@nimte.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51931011)和王宽诚教育基金(批准号:GJTD-2020-11)资助的课题.
      Corresponding author: Li Run-Wei, runweili@nimte.ac.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51931011) and the K.C. Wong Education Foundation (Grant No. GJTD-2020-11).
    [1]

    Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R 2014 Adv. Mater. 26 149Google Scholar

    [2]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [3]

    Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won Sang M, Tao H, Islam A, Yu Ki J, Kim T i, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto Fiorenzo G, Huang Y, Coleman T, Rogers John A 2011 Science 333 838Google Scholar

    [4]

    Someya T, Bauer S, Kaltenbrunner M 2017 MRS Bull. 42 124Google Scholar

    [5]

    Bartolozzi C, Natale L, Nori F, Metta G 2016 Nat. Mater. 15 921Google Scholar

    [6]

    Sundaram S, Kellnhofer P, Li Y, Zhu J Y, Torralba A, Matusik W 2019 Nature 569 698Google Scholar

    [7]

    Guo Q, Wang Z, Xu X, Jiang Y 2017 Chin. J. Engn. 39 1775Google Scholar

    [8]

    Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L 2018 Nat. Commun. 9 244Google Scholar

    [9]

    Li F, Li S, Cao J, Liu Y, Shang J, Li R 2020 Mater. Rev. 34 1059Google Scholar

    [10]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [11]

    Thiele J U, Maat S, Fullerton E E 2003 Appl. Phys. Lett. 82 2859Google Scholar

    [12]

    Fan X, Kim S, Kou X, Kolodzey J, Zhang H, Xiao J Q 2010 Appl. Phys. Lett. 97 212501Google Scholar

    [13]

    Dai G, Zhan Q, Liu Y, Yang H, Zhang X, Chen B, Li R W 2012 Appl. Phys. Lett. 100 122407Google Scholar

    [14]

    Hertel R 2013 Spin 3 1340009Google Scholar

    [15]

    Hirai T, Sepehri Amin H, Hasegawa K, Koyama T, Iguchi R, Ohkubo T, Chiba D, Uchida K I 2021 Appl. Phys. Lett. 118 022403Google Scholar

    [16]

    Xu Y, Liu X, Guo W 2014 Nanoscale 6 12929Google Scholar

    [17]

    Chen Y F, McCord J, Freudenberger J, Kaltofen R, Schmidt O G 2009 J. Appl. Phys. 105 07c302Google Scholar

    [18]

    Yen M, Lai Y H, Kuo C Y, Chen C T, Chang C F, Chu Y H 2020 Adv. Funct. Mater. 30 2004597Google Scholar

    [19]

    Qiao X Y, Wen X C, Wang B M, Bai Y H, Zhan Q F, Xu X H, Li R W 2017 Appl. Phys. Lett. 111 132405Google Scholar

    [20]

    Lu Z, Yang Y, Wen L, Feng J, Lao B, Zheng X, Li S, Zhao K, Cao B, Ren Z, Song D, Du H, Guo Y, Zhong Z, Hao X, Wang Z, Li R W 2021 npj Flex. Electron. 6 9Google Scholar

    [21]

    Li H, Zhan Q, Liu Y, Liu L, Yang H, Zuo Z, Shang T, Wang B, Li R W 2016 Acs Nano 10 4403Google Scholar

    [22]

    Dai G, Xing X, Shen Y, Deng X 2019 J. Phys. D:Appl. Phys. 53 055001Google Scholar

    [23]

    Ota S, Ando A, Chiba D 2018 Nat. Electron. 1 124Google Scholar

    [24]

    Ge J, Wang X, Drack M, Volkov O, Liang M, Cañón Bermúdez G S, Illing R, Wang C, Zhou S, Fassbender J, Kaltenbrunner M, Makarov D 2019 Nat. Commun. 10 4405Google Scholar

    [25]

    Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W 2018 Sci. Robot. 3 eaat0429Google Scholar

    [26]

    Almansouri A S, Alsharif N A, Khan M A, Swanepoel L, Kaidarova A, Salama K N, Kosel J 2019 Adv. Mater. Technol. 4 1900493Google Scholar

    [27]

    Bermudez G S C, Fuchs H, Bischoff L, Fassbender J, Makarov D 2018 Nat. Electron. 1 589Google Scholar

    [28]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 J. Appl. Phys. 113 17A901Google Scholar

    [29]

    Cao D, Wang Z, Pan L, Feng H, Cheng X, Zhu Z, Wang J, Liu Q, Han G 2016 Appl. Phys. A-Mater. 122 938Google Scholar

    [30]

    Dai G H, Zhan Q F, Yang H L, Liu Y W, Zhang X S, Zuo Z H, Chen B, Li R W 2013 J. Appl. Phys. 114 173913Google Scholar

    [31]

    Tang Z H, Wang B M, Yang H L, Xu X Y, Liu Y W, Sun D D, Xia L X, Zhan Q F, Chen B, Tang M H, Zhou Y C, Wang J L, Li R W 2014 Appl. Phys. Lett. 105 103504Google Scholar

    [32]

    Liu Y W, Wang B M, Zhan Q F, Tang Z H, Yang H L, Liu G, Zuo Z H, Zhang X S, Xie Y L, Zhu X J, Chen B, Wang J L, Li R W 2014 Sci. Rep. 4 6615Google Scholar

    [33]

    Merabtine S, Zighem F, Faurie D, Garcia-Sanchez A, Lupo P, Adeyeye A O 2018 Nano Lett. 18 3199Google Scholar

    [34]

    Gao G Q, Jin C, Zheng W C, Pang X, Zheng D X, Bai H L 2018 Epl 123 17002Google Scholar

    [35]

    Ha T D, Chen J W, Yen M, Lai Y H, Wang B Y, Chin Y Y, Wu W B, Lin H J, Juang J Y, Chu Y H 2020 ACS Appl. Mater. Inter. 12 46874Google Scholar

    [36]

    Asai R, Ota S, Namazu T, Takenobu T, Koyama T, Chiba D 2016 J. Appl. Phys. 120 083906Google Scholar

    [37]

    Ota S, Hibino Y, Bang D, Awano H, Kozeki T, Akamine H, Fujii T, Namazu T, Takenobu T, Koyama T, Chiba D 2016 Appl. Phys. Express 9 043004Google Scholar

    [38]

    Zhao S, Zhou Z, Li C, Peng B, Hu Z, Liu M 2018 Acs Nano 12 7167Google Scholar

    [39]

    Matsumoto H, Ota S, Koyama T, Chiba D 2021 Appl. Phys. Lett. 118 022406Google Scholar

    [40]

    Wen X C, Wang B M, Sheng P, Hu S, Yang H L, Pei K, Zhan Q F, Xia W X, Xu H, Li R W 2017 Appl. Phys. Lett. 111 142403Google Scholar

    [41]

    Chen X Y, Wang B M, Wen X C, Sheng P, Pravarthana D, Yang H L, Xie Y L, Liu H G, Xu X H, Lib R W 2020 J. Magn. Magn. Mater. 505 166750Google Scholar

    [42]

    Liu J, Chen J, Zhang Y, Fu S, Chai G, Cao C, Zhu X, Guo Y, Cheng W, Jiang D, Zhao Z, Zhan Q 2021 ACS Appl. Mater. Inter. 13 29975Google Scholar

    [43]

    Zhu Q, Tang R, Peng F, Xu S, Liang G, Zhao R, Fang Y, You L, Su X 2021 Phys. Rev. Appl. 16 054006Google Scholar

    [44]

    Yu Y, Zhan Q F, Wei J W, Wang J B, Dai G H, Zuo Z H, Zhang X S, Liu Y W, Yang H L, Zhang Y, Xie S H, Wang B M, Li R W 2015 Appl. Phys. Lett. 106 162405Google Scholar

    [45]

    Liu W, Ma R, Liu M, Wang H 2018 ACS Appl. Mater. Inter. 10 32331Google Scholar

    [46]

    Liu W, Liu M, Ma R, Zhang R, Zhang W, Yu D, Wang Q, Wang J, Wang H 2018 Adv. Funct. Mater. 28 1705928Google Scholar

    [47]

    Peng B, Xie Q Y, Zhang W L, Zhong Z Y 2007 J. Appl. Phys. 101 09C511Google Scholar

    [48]

    Karboul-Trojet W, Faurie D, Aït-Yahiatène E, Roussigné Y, Mazaleyrat F, Chérif S M 2012 J. Appl. Phys. 111 07A926Google Scholar

    [49]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T W, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [50]

    Yang Q, Cheng Y, Li Y, Zhou Z, Liang J, Zhao X, Hu Z, Peng R, Yang H, Liu M 2020 Adv. Electron. Mater. 6 2000246Google Scholar

    [51]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904Google Scholar

    [52]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [53]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [54]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102Google Scholar

    [55]

    Cain W C, Kryder M H 1990 J. Appl. Phys. 67 5722Google Scholar

    [56]

    Zhang Y, Zhan Q F, Rong X, Li H H, Zuo Z H, Liu Y W, Wang B M, Li R W 2016 IEEE Trans. Magn. 52 2529722Google Scholar

    [57]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 Appl. Phys. Lett. 102 022412Google Scholar

    [58]

    Sheng P, Xie Y L, Bai Y H, Wang B M, Zhang L, Wen X C, Yang H L, Chen X Y, Li X G, Li R W 2019 Appl. Phys. Lett. 115 242403Google Scholar

    [59]

    Zhang Z, Liu E, Zhang W, Wong P K J, Xu Z, Hu F, Li X, Tang J, Wee A T S, Xu F 2019 ACS Appl. Mater. Inter. 11 8258Google Scholar

    [60]

    Shi X, Mi W, Zhang Q, Zhang X 2020 Appl. Phys. Lett. 117 132401Google Scholar

    [61]

    Huang J, Wang H, Wang X, Gao X, Liu J, Wang H 2020 ACS Appl. Mater. Inter. 12 39920Google Scholar

    [62]

    Jin C, Zhu Y, Han W, Liu Q, Hu S, Ji Y, Xu Z, Hu S, Ye M, Chen L 2020 Appl. Phys. Lett. 117 252902Google Scholar

    [63]

    Thai Duy H, Yen M, Lai Y H, Kuo C Y, Chen C T, Tanaka A, Tsai L Z, Zhao Y F, Duan C G, Lee S F, Chang C F, Juang J Y, Chu Y H 2020 Nanoscale 12 3284Google Scholar

    [64]

    Du D, Manzo S, Zhang C, Saraswat V, Genser K T, Rabe K M, Voyles P M, Arnold M S, Kawasaki J K 2021 Nat. Commun. 12 2494Google Scholar

    [65]

    Ling Y, Hu Y, Wang H, Niu B, Chen J, Liu R, Yuan Y, Wang G, Wu D, Xu M, Han Z, Du J, Xu Q 2021 ACS Appl. Mater. Inter. 13 24285Google Scholar

    [66]

    Hong S S, Gu M, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M, Hwang H Y 2020 Science 368 71Google Scholar

    [67]

    Liu E, Fache T, Cespedes-Berrocal D, Zhang Z, Petit-Watelot S, Mangin S, Xu F, Rojas-Sanchez J C 2019 Phys. Rev. Appl. 12 044074Google Scholar

    [68]

    Wong G D H, Ang C C I, Gan W, Law W C, Xu Z, Xu F, Seet C S, Lew W S 2021 Appl. Phys. Lett. 119 042402Google Scholar

    [69]

    Wong G D H, Xu Z, Gan W, Ang C C I, Law W C, Tang J, Zhang W, Wong P K J, Yu X, Xu F, Wee A T S, Seet C S, Lew W S 2021 Acs Nano 15 8319Google Scholar

    [70]

    Faurie D, Zighem F, Garcia-Sanchez A, Lupo P, Adeyeye A O 2017 Appl. Phys. Lett. 110 091904Google Scholar

    [71]

    Melzer M, Lin G G, Makarov D, Schmidt O G 2012 Adv. Mater. 24 6468Google Scholar

    [72]

    Melzer M, Kaltenbrunner M, Makarov D, Karnaushenko D, Karnaushenko D, Sekitani T, Someya T, Schmidt O G 2015 Nat. Commun. 6 6080Google Scholar

    [73]

    Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283Google Scholar

    [74]

    Mun J H, Lee H, Kim J U, Kang M, Hong A R, Jang H S, Han K S, Kim D H 2020 J. Magn. Magn. Mater. 511 166968Google Scholar

    [75]

    Zhang S, Zhan Q, Yu Y, Liu L, Li H, Yang H, Xie Y, Wang B, Xie S, Li R W 2016 Appl. Phys. Lett. 108 102409Google Scholar

    [76]

    Li J C, Zhan Q F, Zhang S L, Wei J W, Wang J B, Pan M J, Xie Y L, Yang H L, Zhou Z, Xie S H, Wang B M, Li R W 2017 Sci. Rep. 7 2837Google Scholar

    [77]

    Zhao J P, Guo Q H, Yin H Z, Zou J T, Zhao Z J, Cheng W J, Jiang D M, Zhan Q F 2020 Chin. Phys. B 29 117501Google Scholar

    [78]

    Guo Q H, Cheng W J, Zhan Q F 2021 J. Mag. Mater. Dev. 52 6Google Scholar

    [79]

    Wang Z, Zhou Z, Cheng W, Jiang D, Zhan Q 2020 J. Magn. Magn. Mater. 513 167126Google Scholar

    [80]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [81]

    Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar

    [82]

    Jiang J, Bitla Y, Huang C W, et al. 2017 Sci. Adv. 3 e1700121Google Scholar

    [83]

    Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [84]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [85]

    Bitla Y, Chu Y H 2017 FlatChem 3 26Google Scholar

    [86]

    Liu H J, Wang C K, Su D, Amrillah T, Hsieh Y H, Wu K H, Chen Y C, Juang J Y, Eng L M, Jen S U, Chu Y H 2017 ACS Appl. Mater. Interf. 9 7297Google Scholar

    [87]

    Huang J, Wang H, Sun X, Zhang X, Wang H 2018 ACS Appl. Mater. Interf. 10 42698Google Scholar

    [88]

    Liu J, Feng Y, Tang R, Zhao R, Gao J, Shi D, Yang H 2018 Adv. Electron. Mater. 4 1700522Google Scholar

    [89]

    Fan J, Xie Y, Qian F, Ji Y, Hu D, Tang R, Liu W, Zhang L, Tong W, Ma C, Yang H 2019 J. Alloys Compd. 806 753Google Scholar

    [90]

    Hou W, Zhou Z, Zhang L, Zhao S, Peng B, Hu Z, Ren W, Ye Z G, Jiang Z D, Liu M 2019 ACS Appl. Mater. Interf. 11 21727Google Scholar

    [91]

    Li C I, Lin J C, Liu H J, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W, Chu Y H 2016 Chem. Mater. 28 3914Google Scholar

    [92]

    Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar

    [93]

    Zhang Y, Shen L, Liu M, Li X, Lu X, Lu L, Ma C, You C, Chen A, Huang C, Chen L, Alexe M, Jia C L 2017 Acs Nano 11 8002Google Scholar

    [94]

    Chen Z, Li F, Huang Q W, Liu F, Wang F F, Ringer S P, Luo L S, Zhang S J, Chen L Q, Liao X Z 2020 Sci. Adv. 6 eabc7156Google Scholar

    [95]

    Lu Z, Liu J, Feng J, Zheng X, Yang L H, Ge C, Jin K J, Wang Z, Li R W 2020 APL Mater. 8 051105Google Scholar

    [96]

    Shrestha S, Coile M, Zhu M, Souri M, Kim J, Pandey R, Brill J W, Hwang J, Kim J W, Seo A 2020 ACS Appl. Nano Mater. 3 6310Google Scholar

    [97]

    An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 30 2003495Google Scholar

    [98]

    Loong L M, Lee W, Qiu X, Yang P, Kawai H, Saeys M, Ahn J H, Yang H 2016 Adv. Mater. 28 4983Google Scholar

    [99]

    Melzer M, Makarov D, Schmidt O G 2020 J. Phys. D 53 083002Google Scholar

    [100]

    Perez N, Melzer M, Makarov D, Ueberschaer O, Ecke R, Schulz S E, Schmidt O G 2015 Appl. Phys. Lett. 106 153501Google Scholar

    [101]

    Wu W, Zhang L, Cai J, Fang B, Luo J, Zeng Z 2019 Appl. Phys. Lett. 115 052401Google Scholar

    [102]

    Chen J Y, Wang J P 2018 Nat. Electron. 1 96Google Scholar

    [103]

    Ota S, Ando A, Sekitani T, Koyama T, Chiba D 2019 Appl. Phys. Lett. 115 202401Google Scholar

    [104]

    Yan Y C, Hu Z, Yang Z B, Yuan W Z, Song C Y, Pan J, Shen Y J 2021 Sci. Robot. 6 abc8801Google Scholar

    [105]

    Bhatti S, Ma C, Liu X, Piramanayagam S N 2019 Adv. Electron. Mater. 5 1800467Google Scholar

    [106]

    Li S, Cao P, Li F, Asghar W, Wu Y, Xiao H, Liu Y, Zhou Y, Yang H, Zhang Y, Shang J, Makarov D, Li R-W 2022 Nano Energy 92 106754Google Scholar

    [107]

    Doan Nguyen B, Zheng Y, Becerra L, Marangolo M, Almanza M, LoBue M 2021 Phys. Rev. Appl. 15 064045Google Scholar

    [108]

    Zhao Y, Peng R, Guo Y, Liu Z, Dong Y, Zhao S, Li Y, Dong G, Hu Y, Zhang J, Peng Y, Yang T, Tian B, Zhao Y, Zhou Z, Jiang Z, Luo Z, Liu M 2021 Adv. Funct. Mater. 31 2009376Google Scholar

    [109]

    Zheng W C, Zheng D X, Wang Y C, Li D, Jin C, Bai H L 2019 J. Magn. Magn. Mater. 481 227Google Scholar

    [110]

    Wang Z G, Wang X J, Li M H, Gao Y, Hu Z Q, Nan T X, Liang X F, Chen H H, Yang J, Cash S, Sun N X 2016 Adv. Mater. 28 9370Google Scholar

    [111]

    Parkin S S P, Roche K P, Suzuki T 1992 Jpn. J. Appl. Phys., Part 2 31 L1246Google Scholar

    [112]

    Chen Y F, Mei Y F, Kaltofen R, et al. 2008 Adv. Mater. 20 3224Google Scholar

    [113]

    Guo M, Yang C, Gao D, Li Q, Zhang A, Feng J, Yang H, Tao R, Fan Z, Zeng M, Zhou G, Lu X, Liu J M 2020 J. Mater. Sci. Technol. 44 42Google Scholar

    [114]

    Luby Š, Anwarzai B, Áč V, Majkova E, Senderák R 2012 Vacuum 86 718Google Scholar

    [115]

    Liu L P, Zhan Q F, Yang H L, Li H H, Zhang S L, Liu Y W, Wang B M, Tan X H, Li R W 2016 AIP Adv. 6 035206Google Scholar

    [116]

    Fuji Y, Kaji S, Hara M, Higashi Y, Hori A, Okamoto K, Nagata T, Baba S, Yuzawa A, Otsu K, Masunishi K, Ono T, Fukuzawa H 2018 Appl. Phys. Lett. 112 062405Google Scholar

    [117]

    Fuji Y, Higashi Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Okamoto K, Baba S, Ono T, Hara M 2019 Jpn. J. Appl. Phys. 58 SD0802Google Scholar

    [118]

    Matsumoto H, Ota S, Ando A, Chiba D 2019 Appl. Phys. Lett. 114 132401Google Scholar

    [119]

    Chen X, Mi W 2021 J. Mater. Chem. C 9 9400Google Scholar

    [120]

    Boutry Clementine M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O, Bao Z 2018 Sci. Robot. 3 eaau6914Google Scholar

    [121]

    Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L 2014 Adv. Mater. 26 2659Google Scholar

  • 图 1  柔性磁性薄膜和器件的主要研究内容: 包括柔性磁性薄膜制备方法(直接生长法[19]、牺牲层+转移法[20]、预应力生长法[21]等)、应力调控规律(对磁各向异性、磁共振、磁畴[22]等的调控)、柔性磁性功能器件设计(磁传感器[21]、应力传感器[23]、触觉传感器[24]等)、器件应用(人机交互[27]、电子皮肤[25]、生理信号监测[26]等)

    Fig. 1.  Research topics of flexible magnetic films and devices. The topics include the fabrication methods (such as direct growth method[19], sacrifice layer and transfer method[20], pre-strained growth method[21], etc.); the strain modulation properties (of magnetic anisotropy, magnetic resonance, and magnetic domain[22], etc.); the design of flexible functional devices (such as magnetic sensors[21], stress sensors[23], and tactile sensors[24], etc.); as well as its applications (in human-machine interface[27], electronic skin[25], and bio signal monitoring[26], etc.).

    图 2  不同测试构型下应变对FeGa薄膜磁滞回线的调控规律(1 Oe = 103/(4π) A/m)[13] (a)磁场H平行于易磁化轴Ku, 拉应变+ε垂直于易磁化轴Ku; (b) H垂直于Ku, 拉应变+ε平行于 Ku; (c) H平行于Ku, 压应变–ε垂直于 Ku; (d) H垂直于Ku, 压应变–ε平行于Ku

    Fig. 2.  Stress-regulation of the magnetic hysteresis loops of FeGa films under various configurations[13]: (a) The magnetic field (H) in parallel with the easy axis (Ku ) and tensile strain (+ε) perpendicular to Ku; (b) H perpendicular to Ku and +ε in parallel with Ku ; (c) H in parallel with Ku and compressive strain (–ε) in parallel with Ku; (d) H perpendicular to Ku and –ε in parallel with Ku.

    图 3  应力对CoFeB薄膜磁弹各向异性的调控规律[40] (a)薄膜在不同磁场下的各向异性磁电阻测量曲线; (b)不同磁场下θHθM的角度关联曲线; (c)不同应力下薄膜的归一化扭矩曲线; (d)磁弹各向异性常数随应力的依赖关系

    Fig. 3.  Stress-modulation of the magnetic anisotropy of CoFeB films[40]: (a) The anisotropic magnetoresistance curves under various magnetic field strength; (b) correlation of θH and θM at different magnetic fields; (c) normalized torque curves of the film at various stress; (d) dependence of the magnetoelastic anisotropy constant on external stress.

    图 4  应变对FeGa[30], Fe, Co, Ni[41], CoFeB[40], TbFeCo[37], Pd/Co/Pd[39], 褶皱结构CoFeB[42], BaM[43]薄膜磁各向异性能的调控效果. 其中, 褶皱结构CoFeB的磁各向异性能由文献[42]估算. 虚线代表普通块体金属的断裂拉伸应变极限

    Fig. 4.  Regulation of the magnetic anisotropy by external strain in FeGa[30], Fe, Co, Ni[41], CoFeB[40], TbFeCo[37], Pd/Co/Pd[39], wrinkled CoFeB[42], and BaM[43]. The magnetic anisotropy of wrinkled CoFeB was estimated from Ref. [42]. The vertical dashed line stands for the maximum tensile strain without crack in bulk metals.

    图 5  (a)不同应力状态下FeGa薄膜的磁畴结构[22], 从左到右分别表示FeGa薄膜样品在凸模具上(未取下)、从凸模具上取下并展平、在凹模具上(未取下)、从凹模具上取下并展平时的磁畴结构; (b)通过电子束刻蚀控制Ni薄膜应力, 调控微区磁畴结构[49], 从左到右分别表示样品制备过程、薄膜形貌、微区应力示意图、磁畴结构

    Fig. 5.  (a) Magnetic domain structure of FeGa film with different stress configurations[22] (from left to right): with FeGa film attached on a convex mold, removed from the convex mold and flattened, attach on a concave mold, removed from the concave mold and flattened; (b) modulation of the magnetic domain structure of Ni film with micro-patterned stress by E-beam lithography[49]. The sample fabrication process, topography of the film, stress distribution, and magnetic domain structures are shown from left to right.

    图 6  通过交换偏置效应表征应力对反铁磁性的调控规律示意图[58] (a)应力平行于初始钉扎方向时对反铁磁磁矩调控的两种状态; (b)应力不影响反铁磁磁矩取向时, 交换偏置异质结的磁滞回线特征; (c)应力改变反铁磁磁矩取向时, 交换偏置异质结的磁滞回线特征

    Fig. 6.  Schematic diagram showing the stress modulation of antiferromagnetic films through the exchange bias effect[58]: (a) Two possible antiferromagnetic configurations under the influence of external stress applied parallel to the initial pinning direction (IPD); (b) the corresponding hysteresis loop of exchange bias structure with the direction of the antiferromagnetic moment unchanged; (c) the corresponding hysteresis loop of exchange bias structure with the direction of the antiferromagnetic moment rotated by 90°.

    图 7  应力对CoFeB/IrMn交换偏置效应的调控规律[58] (a), (b)不同应力下, 磁场沿着(a)和垂直于(b)钉扎方向时磁滞回线的变化; (c)磁场沿着钉扎方向和垂直于钉扎方向时, 剩磁比随应力的变化规律; (d)磁场垂直于钉扎方向时交换偏置场随应力的变化规律

    Fig. 7.  Stress modulation of the exchange bias effect for the CoFeB/IrMnbilayers[58]: (a), (b) Typical hysteresis loops under different stress measured at θ = 0° (a) and θ = 90° (b) with the initial pinning direction (IPD) set along the x direction; (c) temperature dependence of Mr/Ms measured at θ = 0° and 90°; (d) stress dependence of Heb measured at θ = 90°.

    图 8  磁各向异性可调控的柔性磁性薄膜制备方法[30] (a)薄膜的制备过程示意图; (b), (c)不同压应力下生长的薄膜沿着(b)和垂直于(c)压应力方向(y方向)的磁滞回线曲线

    Fig. 8.  Preparation of flexible magnetic films with tunable magnetic anisotropy[30]: (a) Schematic diagram of the preparation process; (b), (c) magnetic hysteresis loops with magnetic field applied along (b) and perpendicular to (c) the compressive stress direction (y direction).

    图 9  应力稳定的柔性磁性薄膜制备方法[19] (a)薄膜的制备过程示意图; (b)所制备薄膜的矩形比随外加应力的变化关系(黑线为常规方法生长样品的对比数据)

    Fig. 9.  Preparation of flexible magnetic films with stress-invariant magnetic anisotropy[19]: (a) Schematic diagram of the fabrication process of CoFeB films with pre-induced magnetic anisotropy; (b) the strain dependence of Mr/Ms for CoFeB films grown with pre-induced magnetic anisotropy (data with films grown without pre-induced magnetic anisotropy are indicated as a comparison).

    图 10  具有周期性“褶皱结构”的柔性磁性薄膜制备方法[75] (a)保持拉伸状态生长磁性薄膜; (b)在诱导出褶皱结构的衬底上生长磁性薄膜

    Fig. 10.  Fabrication of flexible magnetic films with periodic wrinkled structures[75]: (a) Schematic diagram of growing FeGa film on a pre-strained substrate; (b) schematic diagram of growing FeGa film on a periodic wrinkled substrate.

    图 11  (a)云母晶体结构以及沿(001)方向的晶格俯视图; (b)部分基于云母衬底柔性氧化物薄膜工作总结[84]

    Fig. 11.  (a) Crystal structure of mica and its lattice structure in the (001) plane; (b) a summary of typical flexible oxide films grown on mica substrate[84].

    图 12  基于水溶性Sr3Al2O6牺牲层法的柔性La0.67Sr0.33MnO3薄膜制备[95] (a) Sr3Al2O6和SrTiO3的晶体结构示意图; (b)不同晶向Sr3Al2O6与典型钙钛矿氧化物SrTiO3的晶格匹配关系; (c)不同晶向柔性La0.67Sr0.33MnO3薄膜的制备

    Fig. 12.  Fabrication of flexible La0.67Sr0.33MnO3 film based on Sr3Al2O6 sacrifice layer[95]: (a) Crystal structures of Sr3Al2O6 and SrTiO3; (b) schematic diagram of the lattice match relationship between Sr3Al2O6 and SrTiO3 along different crystal orientation; (c) schematic diagram of the preparation of flexible La0.67Sr0.33MnO3 film with various crystal orientations.

    图 13  基于水溶性Ca3–xSrxAl2O6 (0≤x≤3) (CSAO)牺牲层法的柔性SrRuO3薄膜性能(1 emu/cm3 = 103 A/m) [20] (a) SrRuO3与不同牺牲层Sr3Al2O6 (SAO)和CSAO的匹配关系, CSAO和SAO作为牺牲层得到的SRO分别为正交相和四方相; (b)两种牺牲层与晶向对SRO薄膜磁各向异性的调制

    Fig. 13.  Magnetic properties of flexible SrRuO3 films fabricated by using water soluble Ca3–xSrxAl2O6 (0≤x≤3) (CSAO) as sacrifice layer[20]: (a) Comparison of lattice constants between SrRuO3 and different sacrifice layers of Sr3Al2O6 (SAO) and CSAO, the obtained SrRuO3 are of orthorhombic and tetragonal structure, respectively; (b) magnetic anisotropy of the obtained flexible SrRuO3 films.

    图 14  柔性巨磁电阻器件和性能[72] (a)褶皱结构的GMR器件; (b)光学形貌和扫描电镜下的表面形貌, 标尺分别为200 μm和100 μm; (c)器件的GMR曲线

    Fig. 14.  Flexible giant magnetoresistance device and its property[72]: (a) GMR device with wrinkled structure; (b) surface morphology under optical and SEM, the scale bars are 200 μm and 100 μm, respectively; (c) GMR curves of the wrinkled and flat device.

    图 15  可拉伸自旋阀器件和性能[21] (a)器件结构示意图; (b)生长示意图; (c)可拉伸褶皱结构示意图; (d)拉伸状态下的GMR数值、磁灵敏度和电阻变化

    Fig. 15.  Stretchable spin-valve device and its property[21]: (a) Schematic diagram of the device; (b) the device fabrication setups; (c) schematic show of the periodic wrinkled device; (d) variation of the GMR ration, magnetic sensitivity, and resistance at different tensile strain.

    图 16  可感受应力方向的GMR传感器[23] (a)器件结构示意图; (b)不同应变下, 器件磁电阻随着x方向磁场的变化; (c)不同应变下, 器件磁电阻随着y方向磁场的变化; (d)不同方向施加应变时, 电阻变化率随应变大小的变化规律

    Fig. 16.  GMR sensor that can detect the stress direction[23]: (a) Device structure; magnetoresistance at various stress with field along x (b) and y (c) direction; (d) resistivity change ratio as a function of strain at various strain directions.

    图 17  基于GMR效应的双模式柔性传感器[24] (a)器件结构示意图; (b)器件的靠近-接触双模式传感原理; (c)器件在弯曲状态下的光学照片; (d)将传感器固定在木手指上用于传感; (e)当固定有传感器的木手指靠近、接触、远离贴附有磁体的花瓣时器件的电阻变化

    Fig. 17.  GMR-based bimodal flexible sensor[24]: (a) Schematic structure of the GMR-based bimodal flexible sensor; (b) mechanisms of the touchless (proximity) and tactile (pressure) sensing modes; (c) photograph of the sensor in bent state. (d) a photograph of the sensor wrapped around a wooden model finger; (e) change of the electrical resistance upon an interaction event where the finger bearing the sensor approaches, touches and retreats from the magnet-decorated flower petal.

    图 18  基于巨磁阻抗效应的触觉传感器[25] (a)器件结构示意图; (b)器件的力敏特性; (c)将传感器的模拟信号转换成数字-频率信号的电路示意图; (d)外加压力作用下器件的数字-频率响应

    Fig. 18.  Flexible tactile sensor based on the GMI effect[25]: (a) Schematic illustration of the device structure; (b) relation between changes in impedance and applied pressures shows the sensitivity of the tactile sensor in the ultralow pressure range; (c) schematic diagram showing the circuit that converts analog signals recorded from the sensor into digital-frequency signals; (d) the digital-frequency response of the device changed with applied pressure.

    表 1  部分磁性薄膜和器件的拉伸性能比较

    Table 1.  Stretchability of selected magnetic films and devices.

    材料和器件制备方法极限应变文献
    单轴双轴




    PI上沉积的CoFeB薄膜1.6%[70]
    PEN上沉积的Co薄膜2%2%[39]
    具有周期裂纹的
    自旋阀器件
    29%[71]
    具有周期褶皱结构的
    自旋阀器件
    50%[21]
    转移至VHB上的
    GMR器件
    270% [72]


    块体Sr2RuO41%[73]
    生长在云母衬底上的
    BaM单晶薄膜
    1.3%[43]
    转移至PI上的La0.7Ca0.3MnO3单晶薄膜8%5%[66]
    下载: 导出CSV
  • [1]

    Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R 2014 Adv. Mater. 26 149Google Scholar

    [2]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [3]

    Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won Sang M, Tao H, Islam A, Yu Ki J, Kim T i, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto Fiorenzo G, Huang Y, Coleman T, Rogers John A 2011 Science 333 838Google Scholar

    [4]

    Someya T, Bauer S, Kaltenbrunner M 2017 MRS Bull. 42 124Google Scholar

    [5]

    Bartolozzi C, Natale L, Nori F, Metta G 2016 Nat. Mater. 15 921Google Scholar

    [6]

    Sundaram S, Kellnhofer P, Li Y, Zhu J Y, Torralba A, Matusik W 2019 Nature 569 698Google Scholar

    [7]

    Guo Q, Wang Z, Xu X, Jiang Y 2017 Chin. J. Engn. 39 1775Google Scholar

    [8]

    Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L 2018 Nat. Commun. 9 244Google Scholar

    [9]

    Li F, Li S, Cao J, Liu Y, Shang J, Li R 2020 Mater. Rev. 34 1059Google Scholar

    [10]

    Parkin S, Xin J, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661Google Scholar

    [11]

    Thiele J U, Maat S, Fullerton E E 2003 Appl. Phys. Lett. 82 2859Google Scholar

    [12]

    Fan X, Kim S, Kou X, Kolodzey J, Zhang H, Xiao J Q 2010 Appl. Phys. Lett. 97 212501Google Scholar

    [13]

    Dai G, Zhan Q, Liu Y, Yang H, Zhang X, Chen B, Li R W 2012 Appl. Phys. Lett. 100 122407Google Scholar

    [14]

    Hertel R 2013 Spin 3 1340009Google Scholar

    [15]

    Hirai T, Sepehri Amin H, Hasegawa K, Koyama T, Iguchi R, Ohkubo T, Chiba D, Uchida K I 2021 Appl. Phys. Lett. 118 022403Google Scholar

    [16]

    Xu Y, Liu X, Guo W 2014 Nanoscale 6 12929Google Scholar

    [17]

    Chen Y F, McCord J, Freudenberger J, Kaltofen R, Schmidt O G 2009 J. Appl. Phys. 105 07c302Google Scholar

    [18]

    Yen M, Lai Y H, Kuo C Y, Chen C T, Chang C F, Chu Y H 2020 Adv. Funct. Mater. 30 2004597Google Scholar

    [19]

    Qiao X Y, Wen X C, Wang B M, Bai Y H, Zhan Q F, Xu X H, Li R W 2017 Appl. Phys. Lett. 111 132405Google Scholar

    [20]

    Lu Z, Yang Y, Wen L, Feng J, Lao B, Zheng X, Li S, Zhao K, Cao B, Ren Z, Song D, Du H, Guo Y, Zhong Z, Hao X, Wang Z, Li R W 2021 npj Flex. Electron. 6 9Google Scholar

    [21]

    Li H, Zhan Q, Liu Y, Liu L, Yang H, Zuo Z, Shang T, Wang B, Li R W 2016 Acs Nano 10 4403Google Scholar

    [22]

    Dai G, Xing X, Shen Y, Deng X 2019 J. Phys. D:Appl. Phys. 53 055001Google Scholar

    [23]

    Ota S, Ando A, Chiba D 2018 Nat. Electron. 1 124Google Scholar

    [24]

    Ge J, Wang X, Drack M, Volkov O, Liang M, Cañón Bermúdez G S, Illing R, Wang C, Zhou S, Fassbender J, Kaltenbrunner M, Makarov D 2019 Nat. Commun. 10 4405Google Scholar

    [25]

    Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W 2018 Sci. Robot. 3 eaat0429Google Scholar

    [26]

    Almansouri A S, Alsharif N A, Khan M A, Swanepoel L, Kaidarova A, Salama K N, Kosel J 2019 Adv. Mater. Technol. 4 1900493Google Scholar

    [27]

    Bermudez G S C, Fuchs H, Bischoff L, Fassbender J, Makarov D 2018 Nat. Electron. 1 589Google Scholar

    [28]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 J. Appl. Phys. 113 17A901Google Scholar

    [29]

    Cao D, Wang Z, Pan L, Feng H, Cheng X, Zhu Z, Wang J, Liu Q, Han G 2016 Appl. Phys. A-Mater. 122 938Google Scholar

    [30]

    Dai G H, Zhan Q F, Yang H L, Liu Y W, Zhang X S, Zuo Z H, Chen B, Li R W 2013 J. Appl. Phys. 114 173913Google Scholar

    [31]

    Tang Z H, Wang B M, Yang H L, Xu X Y, Liu Y W, Sun D D, Xia L X, Zhan Q F, Chen B, Tang M H, Zhou Y C, Wang J L, Li R W 2014 Appl. Phys. Lett. 105 103504Google Scholar

    [32]

    Liu Y W, Wang B M, Zhan Q F, Tang Z H, Yang H L, Liu G, Zuo Z H, Zhang X S, Xie Y L, Zhu X J, Chen B, Wang J L, Li R W 2014 Sci. Rep. 4 6615Google Scholar

    [33]

    Merabtine S, Zighem F, Faurie D, Garcia-Sanchez A, Lupo P, Adeyeye A O 2018 Nano Lett. 18 3199Google Scholar

    [34]

    Gao G Q, Jin C, Zheng W C, Pang X, Zheng D X, Bai H L 2018 Epl 123 17002Google Scholar

    [35]

    Ha T D, Chen J W, Yen M, Lai Y H, Wang B Y, Chin Y Y, Wu W B, Lin H J, Juang J Y, Chu Y H 2020 ACS Appl. Mater. Inter. 12 46874Google Scholar

    [36]

    Asai R, Ota S, Namazu T, Takenobu T, Koyama T, Chiba D 2016 J. Appl. Phys. 120 083906Google Scholar

    [37]

    Ota S, Hibino Y, Bang D, Awano H, Kozeki T, Akamine H, Fujii T, Namazu T, Takenobu T, Koyama T, Chiba D 2016 Appl. Phys. Express 9 043004Google Scholar

    [38]

    Zhao S, Zhou Z, Li C, Peng B, Hu Z, Liu M 2018 Acs Nano 12 7167Google Scholar

    [39]

    Matsumoto H, Ota S, Koyama T, Chiba D 2021 Appl. Phys. Lett. 118 022406Google Scholar

    [40]

    Wen X C, Wang B M, Sheng P, Hu S, Yang H L, Pei K, Zhan Q F, Xia W X, Xu H, Li R W 2017 Appl. Phys. Lett. 111 142403Google Scholar

    [41]

    Chen X Y, Wang B M, Wen X C, Sheng P, Pravarthana D, Yang H L, Xie Y L, Liu H G, Xu X H, Lib R W 2020 J. Magn. Magn. Mater. 505 166750Google Scholar

    [42]

    Liu J, Chen J, Zhang Y, Fu S, Chai G, Cao C, Zhu X, Guo Y, Cheng W, Jiang D, Zhao Z, Zhan Q 2021 ACS Appl. Mater. Inter. 13 29975Google Scholar

    [43]

    Zhu Q, Tang R, Peng F, Xu S, Liang G, Zhao R, Fang Y, You L, Su X 2021 Phys. Rev. Appl. 16 054006Google Scholar

    [44]

    Yu Y, Zhan Q F, Wei J W, Wang J B, Dai G H, Zuo Z H, Zhang X S, Liu Y W, Yang H L, Zhang Y, Xie S H, Wang B M, Li R W 2015 Appl. Phys. Lett. 106 162405Google Scholar

    [45]

    Liu W, Ma R, Liu M, Wang H 2018 ACS Appl. Mater. Inter. 10 32331Google Scholar

    [46]

    Liu W, Liu M, Ma R, Zhang R, Zhang W, Yu D, Wang Q, Wang J, Wang H 2018 Adv. Funct. Mater. 28 1705928Google Scholar

    [47]

    Peng B, Xie Q Y, Zhang W L, Zhong Z Y 2007 J. Appl. Phys. 101 09C511Google Scholar

    [48]

    Karboul-Trojet W, Faurie D, Aït-Yahiatène E, Roussigné Y, Mazaleyrat F, Chérif S M 2012 J. Appl. Phys. 111 07A926Google Scholar

    [49]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T W, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [50]

    Yang Q, Cheng Y, Li Y, Zhou Z, Liang J, Zhao X, Hu Z, Peng R, Yang H, Liu M 2020 Adv. Electron. Mater. 6 2000246Google Scholar

    [51]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904Google Scholar

    [52]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203Google Scholar

    [53]

    Ali M, Adie P, Marrows C H, Greig D, Hickey B J, Stamps R L 2007 Nat. Mater. 6 70Google Scholar

    [54]

    Salazar-Alvarez G, Sort J, Suriñach S, Baró M D, Nogués J 2007 J. Am. Chem. Soc. 129 9102Google Scholar

    [55]

    Cain W C, Kryder M H 1990 J. Appl. Phys. 67 5722Google Scholar

    [56]

    Zhang Y, Zhan Q F, Rong X, Li H H, Zuo Z H, Liu Y W, Wang B M, Li R W 2016 IEEE Trans. Magn. 52 2529722Google Scholar

    [57]

    Zhang X S, Zhan Q F, Dai G H, Liu Y W, Zuo Z H, Yang H L, Chen B, Li R W 2013 Appl. Phys. Lett. 102 022412Google Scholar

    [58]

    Sheng P, Xie Y L, Bai Y H, Wang B M, Zhang L, Wen X C, Yang H L, Chen X Y, Li X G, Li R W 2019 Appl. Phys. Lett. 115 242403Google Scholar

    [59]

    Zhang Z, Liu E, Zhang W, Wong P K J, Xu Z, Hu F, Li X, Tang J, Wee A T S, Xu F 2019 ACS Appl. Mater. Inter. 11 8258Google Scholar

    [60]

    Shi X, Mi W, Zhang Q, Zhang X 2020 Appl. Phys. Lett. 117 132401Google Scholar

    [61]

    Huang J, Wang H, Wang X, Gao X, Liu J, Wang H 2020 ACS Appl. Mater. Inter. 12 39920Google Scholar

    [62]

    Jin C, Zhu Y, Han W, Liu Q, Hu S, Ji Y, Xu Z, Hu S, Ye M, Chen L 2020 Appl. Phys. Lett. 117 252902Google Scholar

    [63]

    Thai Duy H, Yen M, Lai Y H, Kuo C Y, Chen C T, Tanaka A, Tsai L Z, Zhao Y F, Duan C G, Lee S F, Chang C F, Juang J Y, Chu Y H 2020 Nanoscale 12 3284Google Scholar

    [64]

    Du D, Manzo S, Zhang C, Saraswat V, Genser K T, Rabe K M, Voyles P M, Arnold M S, Kawasaki J K 2021 Nat. Commun. 12 2494Google Scholar

    [65]

    Ling Y, Hu Y, Wang H, Niu B, Chen J, Liu R, Yuan Y, Wang G, Wu D, Xu M, Han Z, Du J, Xu Q 2021 ACS Appl. Mater. Inter. 13 24285Google Scholar

    [66]

    Hong S S, Gu M, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M, Hwang H Y 2020 Science 368 71Google Scholar

    [67]

    Liu E, Fache T, Cespedes-Berrocal D, Zhang Z, Petit-Watelot S, Mangin S, Xu F, Rojas-Sanchez J C 2019 Phys. Rev. Appl. 12 044074Google Scholar

    [68]

    Wong G D H, Ang C C I, Gan W, Law W C, Xu Z, Xu F, Seet C S, Lew W S 2021 Appl. Phys. Lett. 119 042402Google Scholar

    [69]

    Wong G D H, Xu Z, Gan W, Ang C C I, Law W C, Tang J, Zhang W, Wong P K J, Yu X, Xu F, Wee A T S, Seet C S, Lew W S 2021 Acs Nano 15 8319Google Scholar

    [70]

    Faurie D, Zighem F, Garcia-Sanchez A, Lupo P, Adeyeye A O 2017 Appl. Phys. Lett. 110 091904Google Scholar

    [71]

    Melzer M, Lin G G, Makarov D, Schmidt O G 2012 Adv. Mater. 24 6468Google Scholar

    [72]

    Melzer M, Kaltenbrunner M, Makarov D, Karnaushenko D, Karnaushenko D, Sekitani T, Someya T, Schmidt O G 2015 Nat. Commun. 6 6080Google Scholar

    [73]

    Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283Google Scholar

    [74]

    Mun J H, Lee H, Kim J U, Kang M, Hong A R, Jang H S, Han K S, Kim D H 2020 J. Magn. Magn. Mater. 511 166968Google Scholar

    [75]

    Zhang S, Zhan Q, Yu Y, Liu L, Li H, Yang H, Xie Y, Wang B, Xie S, Li R W 2016 Appl. Phys. Lett. 108 102409Google Scholar

    [76]

    Li J C, Zhan Q F, Zhang S L, Wei J W, Wang J B, Pan M J, Xie Y L, Yang H L, Zhou Z, Xie S H, Wang B M, Li R W 2017 Sci. Rep. 7 2837Google Scholar

    [77]

    Zhao J P, Guo Q H, Yin H Z, Zou J T, Zhao Z J, Cheng W J, Jiang D M, Zhan Q F 2020 Chin. Phys. B 29 117501Google Scholar

    [78]

    Guo Q H, Cheng W J, Zhan Q F 2021 J. Mag. Mater. Dev. 52 6Google Scholar

    [79]

    Wang Z, Zhou Z, Cheng W, Jiang D, Zhan Q 2020 J. Magn. Magn. Mater. 513 167126Google Scholar

    [80]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [81]

    Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar

    [82]

    Jiang J, Bitla Y, Huang C W, et al. 2017 Sci. Adv. 3 e1700121Google Scholar

    [83]

    Dong G H, Li S Z, Yao M T, Zhou Z Y, Zhang Y Q, Han X, Luo Z L, Yao J X, Peng B, Hu Z Q, Huang H B, Jia T T, Li J Y, Ren W, Ye Z G, Ding X D, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [84]

    Chu Y H 2017 npj Quantum Mater. 2 67Google Scholar

    [85]

    Bitla Y, Chu Y H 2017 FlatChem 3 26Google Scholar

    [86]

    Liu H J, Wang C K, Su D, Amrillah T, Hsieh Y H, Wu K H, Chen Y C, Juang J Y, Eng L M, Jen S U, Chu Y H 2017 ACS Appl. Mater. Interf. 9 7297Google Scholar

    [87]

    Huang J, Wang H, Sun X, Zhang X, Wang H 2018 ACS Appl. Mater. Interf. 10 42698Google Scholar

    [88]

    Liu J, Feng Y, Tang R, Zhao R, Gao J, Shi D, Yang H 2018 Adv. Electron. Mater. 4 1700522Google Scholar

    [89]

    Fan J, Xie Y, Qian F, Ji Y, Hu D, Tang R, Liu W, Zhang L, Tong W, Ma C, Yang H 2019 J. Alloys Compd. 806 753Google Scholar

    [90]

    Hou W, Zhou Z, Zhang L, Zhao S, Peng B, Hu Z, Ren W, Ye Z G, Jiang Z D, Liu M 2019 ACS Appl. Mater. Interf. 11 21727Google Scholar

    [91]

    Li C I, Lin J C, Liu H J, Chu M W, Chen H W, Ma C H, Tsai C Y, Huang H W, Lin H J, Liu H L, Chiu P W, Chu Y H 2016 Chem. Mater. 28 3914Google Scholar

    [92]

    Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar

    [93]

    Zhang Y, Shen L, Liu M, Li X, Lu X, Lu L, Ma C, You C, Chen A, Huang C, Chen L, Alexe M, Jia C L 2017 Acs Nano 11 8002Google Scholar

    [94]

    Chen Z, Li F, Huang Q W, Liu F, Wang F F, Ringer S P, Luo L S, Zhang S J, Chen L Q, Liao X Z 2020 Sci. Adv. 6 eabc7156Google Scholar

    [95]

    Lu Z, Liu J, Feng J, Zheng X, Yang L H, Ge C, Jin K J, Wang Z, Li R W 2020 APL Mater. 8 051105Google Scholar

    [96]

    Shrestha S, Coile M, Zhu M, Souri M, Kim J, Pandey R, Brill J W, Hwang J, Kim J W, Seo A 2020 ACS Appl. Nano Mater. 3 6310Google Scholar

    [97]

    An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 30 2003495Google Scholar

    [98]

    Loong L M, Lee W, Qiu X, Yang P, Kawai H, Saeys M, Ahn J H, Yang H 2016 Adv. Mater. 28 4983Google Scholar

    [99]

    Melzer M, Makarov D, Schmidt O G 2020 J. Phys. D 53 083002Google Scholar

    [100]

    Perez N, Melzer M, Makarov D, Ueberschaer O, Ecke R, Schulz S E, Schmidt O G 2015 Appl. Phys. Lett. 106 153501Google Scholar

    [101]

    Wu W, Zhang L, Cai J, Fang B, Luo J, Zeng Z 2019 Appl. Phys. Lett. 115 052401Google Scholar

    [102]

    Chen J Y, Wang J P 2018 Nat. Electron. 1 96Google Scholar

    [103]

    Ota S, Ando A, Sekitani T, Koyama T, Chiba D 2019 Appl. Phys. Lett. 115 202401Google Scholar

    [104]

    Yan Y C, Hu Z, Yang Z B, Yuan W Z, Song C Y, Pan J, Shen Y J 2021 Sci. Robot. 6 abc8801Google Scholar

    [105]

    Bhatti S, Ma C, Liu X, Piramanayagam S N 2019 Adv. Electron. Mater. 5 1800467Google Scholar

    [106]

    Li S, Cao P, Li F, Asghar W, Wu Y, Xiao H, Liu Y, Zhou Y, Yang H, Zhang Y, Shang J, Makarov D, Li R-W 2022 Nano Energy 92 106754Google Scholar

    [107]

    Doan Nguyen B, Zheng Y, Becerra L, Marangolo M, Almanza M, LoBue M 2021 Phys. Rev. Appl. 15 064045Google Scholar

    [108]

    Zhao Y, Peng R, Guo Y, Liu Z, Dong Y, Zhao S, Li Y, Dong G, Hu Y, Zhang J, Peng Y, Yang T, Tian B, Zhao Y, Zhou Z, Jiang Z, Luo Z, Liu M 2021 Adv. Funct. Mater. 31 2009376Google Scholar

    [109]

    Zheng W C, Zheng D X, Wang Y C, Li D, Jin C, Bai H L 2019 J. Magn. Magn. Mater. 481 227Google Scholar

    [110]

    Wang Z G, Wang X J, Li M H, Gao Y, Hu Z Q, Nan T X, Liang X F, Chen H H, Yang J, Cash S, Sun N X 2016 Adv. Mater. 28 9370Google Scholar

    [111]

    Parkin S S P, Roche K P, Suzuki T 1992 Jpn. J. Appl. Phys., Part 2 31 L1246Google Scholar

    [112]

    Chen Y F, Mei Y F, Kaltofen R, et al. 2008 Adv. Mater. 20 3224Google Scholar

    [113]

    Guo M, Yang C, Gao D, Li Q, Zhang A, Feng J, Yang H, Tao R, Fan Z, Zeng M, Zhou G, Lu X, Liu J M 2020 J. Mater. Sci. Technol. 44 42Google Scholar

    [114]

    Luby Š, Anwarzai B, Áč V, Majkova E, Senderák R 2012 Vacuum 86 718Google Scholar

    [115]

    Liu L P, Zhan Q F, Yang H L, Li H H, Zhang S L, Liu Y W, Wang B M, Tan X H, Li R W 2016 AIP Adv. 6 035206Google Scholar

    [116]

    Fuji Y, Kaji S, Hara M, Higashi Y, Hori A, Okamoto K, Nagata T, Baba S, Yuzawa A, Otsu K, Masunishi K, Ono T, Fukuzawa H 2018 Appl. Phys. Lett. 112 062405Google Scholar

    [117]

    Fuji Y, Higashi Y, Kaji S, Masunishi K, Nagata T, Yuzawa A, Okamoto K, Baba S, Ono T, Hara M 2019 Jpn. J. Appl. Phys. 58 SD0802Google Scholar

    [118]

    Matsumoto H, Ota S, Ando A, Chiba D 2019 Appl. Phys. Lett. 114 132401Google Scholar

    [119]

    Chen X, Mi W 2021 J. Mater. Chem. C 9 9400Google Scholar

    [120]

    Boutry Clementine M, Negre M, Jorda M, Vardoulis O, Chortos A, Khatib O, Bao Z 2018 Sci. Robot. 3 eaau6914Google Scholar

    [121]

    Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L 2014 Adv. Mater. 26 2659Google Scholar

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [4] 熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏. FeNiMo/SiO2复合粉芯的制备与软磁性能调控. 物理学报, 2022, 71(15): 157502. doi: 10.7498/aps.71.20212317
    [5] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, 2022, 71(12): 127505. doi: 10.7498/aps.71.20220727
    [6] 聂晓蕾, 余灏成, 朱婉婷, 桑夏晗, 魏平, 赵文俞. 石墨烯/Bi0.5Sb1.5Te3柔性热电薄膜及其面内散热器件的设计制备与性能评价. 物理学报, 2022, 71(15): 157301. doi: 10.7498/aps.71.20220358
    [7] 王海宇, 刘英杰, 寻璐璐, 李竞, 杨晴, 田祺云, 聂天晓, 赵巍胜. 大面积二维磁性材料的制备及居里温度调控. 物理学报, 2021, 70(12): 127301. doi: 10.7498/aps.70.20210223
    [8] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [9] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [10] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [11] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究. 物理学报, 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [12] 陈桢妮, 刘胜利, 王海云, 程杰. Gd掺杂对无氟金属有机物沉积法制备Y1-xGdxBCO薄膜的应力调控. 物理学报, 2017, 66(15): 156101. doi: 10.7498/aps.66.156101
    [13] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控. 物理学报, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [15] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [16] 陈理想, 张远颖. 光子高阶轨道角动量制备、调控及传感应用研究进展. 物理学报, 2015, 64(16): 164210. doi: 10.7498/aps.64.164210
    [17] 刘浩, 薛玉明, 乔在祥, 李微, 张超, 尹富红, 冯少君. 铜锌锡硫薄膜材料及其器件应用研究进展. 物理学报, 2015, 64(6): 068801. doi: 10.7498/aps.64.068801
    [18] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应. 物理学报, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [19] 余柏林, 唐新峰, 祁 琼, 张清杰. CoSb3纳米热电材料的制备及热传输特性. 物理学报, 2004, 53(9): 3130-3135. doi: 10.7498/aps.53.3130
    [20] 梁 风, 严学俭. 类金刚石薄膜的性质、应用及制备. 物理学报, 1999, 48(6): 1095-1102. doi: 10.7498/aps.48.1095
计量
  • 文章访问数:  8600
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-19
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回