搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgyIn3.33–y/3Se5化合物结构和热电性能

訾鹏 白辉 汪聪 武煜天 任培安 陶奇睿 吴劲松 苏贤礼 唐新峰

引用本文:
Citation:

AgyIn3.33–y/3Se5化合物结构和热电性能

訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰

Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds

Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng
PDF
HTML
导出引用
  • 本文使用静态扩散法结合常规X射线粉末衍射和电子探针技术, 在Ag-In-Se体系中发现了AgyIn3.33–y/3Se5新化合物. 其结构属于三方晶系, 空间群为P3m1, 是二维层状结构, 单层晶胞由9个原子量子层按照Se1-In1-Se2-In2-Se3-Ag/In3 -Se4-In4-Se5顺序排布构成, 层间由弱范德瓦耳斯力结合. 烧结的块体样品表现出强烈的取向性, 在平行压力方向上具有极低的晶格热导率(在873 K为0.15 W·m–1·K–1). 这种本征低的晶格热导率主要源于材料的低声速和低频光学支声子与声学支声子强耦合作用. AgyIn3.33–y/3Se5样品表现为n型传导, 室温下电导率约为4 × 104 S·m–1, Seebeck系数约为–80 μV·K–1, 样品在宽温度范围内均表现出较好的电传输性能, 在450—800 K范围内的功率因子为5 μW·cm–1·K–2左右. 由于在平行压力方向上低的晶格热导率, 最终Ag0.407In3.198Se5样品在873 K达到最大热电优值ZT为1.01, 在300—850 K的平均ZT为0.45. 该化合物的发现, 扩充了铜属硫基化合物体系的n型材料, 为铜属硫基化合物体系的应用奠定了重要基础.
    In this study, we find new AgyIn3.33–y/3Se5 compounds in Ag-In-Se system by static diffusion method combined with common X-ray diffraction and backscattering electron analysis. The crystal structure belongs to the trilateral system with the P3m1 space group, which features a two-dimensional layered structure. The unit cell is composed of 9-atom quantum layers arranged in the sequence of Se1-In1-Se2-In2-Se3-Ag/In3-Se4-In4-Se5, and in-between these layers are bonded by the weak van der Waals force. The sintered bulk samples show highly anisotropic transport properties and have an ultra-low lattice thermal conductivity along the direction parallel to sintering pressure about 0.15 W·m–1·K–1 at 873 K. The intrinsically ultra-low lattice thermal conductivity mainly comes from low phonon velocity and the strong coupling between low frequency optical phonon and acoustic phonons. The AgyIn3.33–y/3Se5 compounds behave as an n-type conduction. The electrical conductivity is 4×104 S·m–1 and the Seebeck coefficient is –80 μV·K–1 at room temperature. Therefore, AgyIn3.33–y/3Se5 compounds show high electrical transport properties in a wide temperature range, and the power factor is around 5 μW·cm–1·K–2 in a range of 450–800 K. Owing to the ultra-low lattice thermal conductivity along the direction parallel to sintering pressure, Ag0.407In3.198Se5 reaches a maximum ZT of 1.01 at 873 K and an average ZT of 0.45 at 300–850 K. The discovery of AgyIn3.33–y/3Se5 expands the n-type copper based chalcogenide and lays an important foundation for the application of copper based chalcogenide.
      通信作者: 苏贤礼, suxianli@whut.edu.cn ; 唐新峰, tangxf@whut.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018YFB0703600)和国家自然科学基金(批准号: 52122108, 51972256)资助的课题.
      Corresponding author: Su Xian-Li, suxianli@whut.edu.cn ; Tang Xin-Feng, tangxf@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600) and the National Natural Science Foundation of China (Grant Nos. 52122108, 51972256).
    [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • 图 1  (a) 三元Ag-In-Se系统示意相图; (b) 图(a)中红色区域的放大图

    Fig. 1.  (a) Schematic ternary phase diagram of Ag-In-Se; (b) enlarged view of the red area in Fig.1 (a).

    图 2  (a) (Ag2Se)x(In2Se3)100–x (x = 0—20)的粉末XRD图谱; (b) x = 0, 3.3, 5.3, 10.9, 13.6和16的背散射图片; (c) 所合成x = 0, 3.3, 5.3, 8.3, 10.9, 13.6和16的样品不同衬度区域电子能谱组成Ag/In比, 紫色虚线为合成样品名义组成线, 红色圆圈标出的为单相组成

    Fig. 2.  (a) Powder XRD pattern of (Ag2Se)x(In2Se3)100–x (x = 0–20); (b) backscattering electron (BSE) image of the samples with x = 0, 3.3, 5.3, 10.9, 13.6 and 16; (c) the ratio of Ag/In in x = 0, 3.3, 5.3, 8.3, 10.9, 13.6 and 16, the purple dotted line is the nominal composition line, and the red circle is marked as single-phase composition.

    图 3  (Ag2Se)x(In2Se3)100–x (x = 10.9)样品的慢扫XRD(红色)(10°—90°), 精修得到的衍射峰(黑色), Bragg 峰位 (绿色), 衍射峰的差异(蓝色), Rp = 6.84%, Rwp = 9.31%.

    Fig. 3.  Rietveld refinement of (Ag2Se)x(In2Se3)100–x (x = 10.9), experimental (red point), calculated (black), Bragg position (green), defference (blue) Rp = 6.84%, Rwp = 9.31%.

    图 4  AgyIn3.33–y/3Se5的晶体结构图 (a) a轴投影; (b) c轴投影; (c) 单个晶胞的a轴投影; (d) 多面体的堆叠; (e) 以阳离子为中心的多面体

    Fig. 4.  Crystal structure diagram of AgyIn3.33–y/3Se5: (a) a-axis projection; (b) c-axis projection; (c) a-axis projection of a single cell; (d) stacking of polyhedron; (e) cation centered polyhedron.

    图 5  (a)—(c) Ag0.392In3.203Se5烧结块体自由断裂面的不同放大倍数的场发射扫描电镜照片

    Fig. 5.  (a)–(c) Field emission scanning electron microscope images of freshly fractured surface for Ag0.392In3.203Se5 bulk sample with different magnifications.

    图 6  (a) Ag0.392In3.203Se5样品的低倍高角度环形暗场像(HAADF-STEM); (b)—(d) 图(a)中Ag-In-Se元素的能谱面扫描图(EDS-Map)

    Fig. 6.  (a) HAADF-STEM (high-angle annular dark-field STEM) image of Ag0.392In3.203Se5; (b)–(d) EDS elemental mapping of Ag, In, and Se of Fig. 6 (a).

    图 7  Ag0.392In3.203Se5 样品的微观图像 (a) [001]晶向的高倍高角度环形暗场像(HAADF-STEM); (b) 图(a)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (c) [010] 晶向的高倍高角度环形暗场像(HAADF-STEM); (d) 图(c)区域的选取电子衍射(SAED)和模拟的选取电子衍射(SAED); (e), (f) 图(c)的染色放大图

    Fig. 7.  Microstructure of Ag0.392In3.203Se5: (a) High-magnification HAADF-STEM image along the [001]; (b) SAED pattern and calculation of (a); (c) high-magnification HAADF-STEM image along the [010]; (d) SAED pattern and calculation of (c); (e), (f) enlarged image of Fig.7 (c).

    图 A1  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)的XRD图谱

    Fig. A1.  Powder XRD patterns of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 A2  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 的背散射图片和元素面分布图

    Fig. A2.  Backscattering electron (BSE) image and elemental distribution map of AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415).

    图 8  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415)电输运性能 (a) 电导率; (b) 赛贝克系数; (c) 功率因子; (d) 单抛带模型计算载流子有效质量

    Fig. 8.  Temperature dependences of (a) the electrical conductivity, (b) Seebeck coefficient, and (c) power factor for the AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) samples; (d) Seebeck coefficients as a function of the charge carrier concentration at 300 K, where the dashed lines are Pisarenko plots based on the SPB model.

    图 9  AgyIn3.33–y/3Se5 (y = 0.384, 0.392, 0.400, 0.407, 0.415) 热输运性能和热电优值 (a) 热导率; (b) AgyIn3.33–y/3Se5 与AgInSe2[35], AgInTe2[38], AgIn5Se8[30]和CuInSe2[39]的晶格热导率; (c) AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40]ZT值, 300—873 K; (d) 300—850 K的平均ZTavg

    Fig. 9.  (a) The temperature-dependent of the total thermal conductivity for AgyIn3.33–y/3Se5; (b) the lattice thermal conductivity for AgyIn3.33–y/3Se5, AgInSe2[35], AgInTe2[38], AgIn5Se8[30] and CuInSe2[39]; (c) merit ZT for AgyIn3.33–y/3Se5, AgInSe2[35], AgIn5Se8[30], Ag1.03In5Se8[30], Ag0.9Cd0.1InSe8[35], Ag1.02InSe2[35], Ag1.6InSe2.3[40], at 300-873 K; (d) the average ZT at 300–850 K.

    图 10  Ag0.392In0.203Se5样品的低温热容 (a) $C_{\rm p}/T^3\text-T$; (b) $ C_{\rm p}/T\text-T^2 $

    Fig. 10.  (a) The relationship between $ C_{\rm p}/T^3 $ and T, (b) Cp/T and T 2 of Ag0.392In0.203Se5.

    表 1  AgyIn3.33–y/3Se5样品的室温载流子浓度和迁移率

    Table 1.  The carrier concentration and Hall mobility of AgyIn3.33–y/3Se5 at room temperature.

    Sampley = 0.384y = 0.392y = 0.400y = 0.407y = 0.415
    μH / (cm2·V–1·s–1)136.42141.21144.80131.40130.69
    nH /(1019 cm–3)1.881.701.681.931.85
    下载: 导出CSV

    表 2  Ag0.392In0.203Se5样品使用德拜-爱因斯坦模型拟合低温热容的参数

    Table 2.  Parameters obtained by fitting the experimental low-temperature heat capacity data to the Debye-Einstein model of Ag0.392In0.203Se5.

    Sampleγ/
    (mJ·mol–1·K–2)
    b/
    (mJ·mol–1·K–4)
    A1θE1/KA2θE1/KθD/K
    y = 0.3920.028132.95 × 10–413.4340.1857.0182.63164
    下载: 导出CSV

    表 3  Ag0.392In0.203Se5, AgInSe2[44]和AgIn5Se8[30]的室温杨氏模量E、格林艾森常数常数γ对比

    Table 3.  Comparisons of Elastic properties and Grüneisen parameters at room temperature between Ag0.392In0.203Se5, AgInSe2[44], and AgIn5Se8[30].

    ParameterAg0.392In3.203Se5AgInSe2AgIn5Se8
    vl/(m·s–1)305835843778
    vs/(m·s–1)152715301803
    va/(m·s–1)171317292028
    E /GPa35.052.550.6
    γ2.002.872.20
    下载: 导出CSV
  • [1]

    Qin B, Wang D, Liu X, Qin Y, Dong J-F, Luo J, Li J-W, Liu W, Tan G, Tang X, Li J F, He J, Zhao L D 2021 Science 373 556Google Scholar

    [2]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [3]

    陶颖, 祁宁, 王波, 陈志权, 唐新峰 2018 物理学报 67 197201Google Scholar

    Tao Y, Qi N, Wang B, Chen Z Q, Tang X F 2018 Acta Phys. Sin. 67 197201Google Scholar

    [4]

    Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C 2017 Adv. Mater. 29 23Google Scholar

    [5]

    Deng R, Su X, Hao S, Zheng Z, Zhang M, Xie H, Liu W, Yan Y, Wolverton C, Uher C, Kanatzidis M G, Tang X 2018 Energy Environ. Sci. 11 1520Google Scholar

    [6]

    Tao Q, Deng R, Li J, Yan Y, Su X, Poudeu P F P, Tang X 2020 ACS Appl. Mater. Interfaces 12 26330Google Scholar

    [7]

    Tang X, Li Z, Liu W, Zhang Q, Uher C 2022 Interdiscip. Mater. 1 88Google Scholar

    [8]

    Chen Z G, Shi X, Zhao L-D, Zou J 2018 Prog. Mater. Sci. 97 283Google Scholar

    [9]

    Mangavati S, Pal A, Rao A, Jiang Z Z, Kuo Y K 2022 J. Phys. Chem. Solids. 160 110301Google Scholar

    [10]

    Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z 2021 ACS Appl. Mater. Interfaces 13 58936Google Scholar

    [11]

    Zhang J, Zhu T, Zhang C, Yan Y, Tan G, Liu W, Su X, Tang X 2021 J. Alloy. Compd. 881 160639Google Scholar

    [12]

    Zhang Q, Ti Z, Zhu Y, Zhang Y, Cao Y, Li S, Wang M, Li D, Zou B, Hou Y, Wang P, Tang G 2021 ACS Nano. 15 19345Google Scholar

    [13]

    Zhang R, Pei J, Shan Z, Zhou W, Wu Y, Han Z, Zhao Y H, Li J F, Ge Z H, Zhang B P 2022 Chem. Eng. J. 429 132275Google Scholar

    [14]

    杨枭, 苏贤礼, 鄢永高, 唐新峰 2021 无机材料学报 36 75Google Scholar

    Yang X, Su X L, Yan Y G, Tang X F 2021 J. Inorg. Mater. 36 75Google Scholar

    [15]

    Cao Y, Bai H, Li Z, Zhang Z, Tang Y, Su X, Wu J, Tang X 2021 ACS Appl. Mater. Interfaces 13 43134Google Scholar

    [16]

    Su X, Hao S, Bailey T P, Wang S, Hadar I, Tan G, Song T B, Zhang Q, Uher C, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Energy Mater. 8 1800659Google Scholar

    [17]

    杨东旺, 罗婷婷, 苏贤礼, 吴劲松, 唐新峰 2021 无机材料学报 36 991Google Scholar

    Yang D W, Luo T T, Su X L, Wu J S, Tang X F 2021 J. Inorg. Mater. 36 991Google Scholar

    [18]

    Cai S, Hao S, Luo Y, Su X, Luo Z-Z, Hu X, Wolverton C, Dravid V P, Kanatzidis M G 2020 Chem. Mater. 32 3561Google Scholar

    [19]

    Ma N, Li F, Li J G, Liu X, Zhang D B, Li Y Y, Chen L, Wu L M 2021 J. Am. Chem. Soc. 143 18490Google Scholar

    [20]

    Xia Y, Ozolins V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [21]

    Chen X, Carrete J, Sullivan S, van Roekeghem A, Li Z, Li X, Zhou J, Mingo N, Shi L 2019 Phys. Rev. Lett. 122 185901Google Scholar

    [22]

    Zhang H, Liu H, Wei K, Kurakevych O O, Le Godec Y, Liu Z, Martin J, Guerrette M, Nolas G S, Strobel T A 2017 Phys. Rev. Lett. 118 146601Google Scholar

    [23]

    Ren W, Geng H, Zhang Z, Zhang L 2017 Phys. Rev. Lett. 118 245901Google Scholar

    [24]

    He J, Amsler M, Xia Y, Naghavi S S, Hegde V I, Hao S, Goedecker S, Ozolins V, Wolverton C 2016 Phys. Rev. Lett. 117 046602Google Scholar

    [25]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [26]

    Su X, Zhao N, Hao S, Stoumpos C C, Liu M, Chen H, Xie H, Zhang Q, Wolverton C, Tang X, Kanatzidis M G 2018 Adv. Funct. Mater. 29 1806534Google Scholar

    [27]

    Shen X, Wang G, Li S, Yang C C, Tan H, Zhang Y, Lu X, He J, Wang G, Zhou X 2019 J. Alloy. Compd. 805 444Google Scholar

    [28]

    Shen X, Shaheen N, Zhang A, Yang D, Yao W, Wang G, Lu X, Zhou X 2017 RSC Advances 7 12719Google Scholar

    [29]

    Panda R, Naik R, Mishra N C 2019 J. Alloy. Compd. 778 819Google Scholar

    [30]

    Shen X, Zhang B, Chen Q, Tan H, Zhang X, Wang G, Lu X, Zhou X 2019 Inorg. Chem. Front. 6 3545Google Scholar

    [31]

    Ying P Z, Zhou H, Gao Y L, Li Y Y, Li Y P, Lian X L, Cui J L 2012 Key Eng. Mater. 519 188Google Scholar

    [32]

    Xie H, Hao S, Cai S, Bailey T P, Uher C, Wolverton C, Dravid V P, Kanatzidis M G 2020 Energy Environ. Sci. 13 3693Google Scholar

    [33]

    Xie H, Hao S, Bailey T P, Cai S, Zhang Y, Slade T J, Snyder G J, Dravid V P, Uher C, Wolverton C, Kanatzidis M G 2021 J. Am. Chem. Soc. 143 5978Google Scholar

    [34]

    Zhu Y, Wei B, Liu J, Koocher N Z, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli J M, Zhao L-D, Snyder G J, Hong J 2021 Mater. Today Phys. 19 100428Google Scholar

    [35]

    Qiu P, Qin Y, Zhang Q, Li R, Yang J, Song Q, Tang Y, Bai S, Shi X, Chen L 2018 Adv. Sci. 5 1700727Google Scholar

    [36]

    骆军, 何世洋, 李志立, 李永博, 王风, 张继业 2019 无机材料学报 34 247Google Scholar

    Luo J, He S Y, Li Z L, Li Y B, Wang F, Zhang J Y 2019 J. Inorg. Mater. 34 247Google Scholar

    [37]

    Deng T, Xing T, Brod M K, Sheng Y, Qiu P, Veremchuk I, Song Q, Wei T-R, Yang J, Snyder G J, Grin Y, Chen L, Shi X 2020 Energy Environ. Sci. 13 3041Google Scholar

    [38]

    Aikebaier Y, Kurosaki K, Sugahara T, Ohishi Y, Muta H, Yamanaka S 2012 M. S. E.: B 177 999

    [39]

    Yang N, Chen C, Pan L, Zhao Y, Wang Y 2020 J. Alloy. Compd. 847 156410Google Scholar

    [40]

    Zhong Y, Luo Y, Li X, Cui J 2020 Appl. Energ. Mater. 3 12468Google Scholar

    [41]

    Ying P, Li X, Wang Y, Yang J, Fu C, Zhang W, Zhao X, Zhu T 2017 Adv. Funct. Mater. 27 188Google Scholar

    [42]

    Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905Google Scholar

    [43]

    Li Y, Li Z, Zhang C, Yang D, Liu T, Yan Y, Liu W, Tan G, Su X, Uher C, Tang X 2019 Mater. Today Phys. 9 10905Google Scholar

    [44]

    Zhu Y, Liu Y, Wood M, Koocher N Z, Liu Y, Liu L, Hu T, Rondinelli J M, Hong J, Snyder G J, Xu W 2019 Chem. Mater. 31 8182Google Scholar

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能. 物理学报, 2024, 73(9): 097101. doi: 10.7498/aps.73.20240098
    [2] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能. 物理学报, 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
    [4] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究. 物理学报, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [9] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [10] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [11] 罗文辉, 李涵, 林泽冰, 唐新峰. Si含量对高锰硅化合物相组成及热电性能的影响研究. 物理学报, 2010, 59(12): 8783-8788. doi: 10.7498/aps.59.8783
    [12] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律. 物理学报, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [13] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [14] 王善禹, 谢文杰, 李涵, 唐新峰. 熔体旋甩法合成n型(Bi0.85Sb0.15)2(Te1-xSex)3化合物的微结构及热电性能. 物理学报, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [15] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [16] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性. 物理学报, 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [17] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [18] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [19] 刘海君, 鄢永高, 唐新峰, 尹玲玲, 张清杰. p型Ag0.5(Pb8-xSnx)In0.5Te10化合物的制备及其热电性能. 物理学报, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [20] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. n型BayNixCo4-xSb12化合物的热电性能. 物理学报, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
计量
  • 文章访问数:  5141
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-02-06
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回