-
基于二维材料的场效应晶体管在超大规模集成技术方面具有非常大的应用潜力, 因此开发高性能的短沟道二维半导体场效应晶体管是构建超大规模集成的必经之路. 对于二维材料, 获得10 nm以下沟道长度的二维半导体晶体管难度较大, 目前很少有稳定制备亚10 nm二维半导体晶体管的方法. 本文使用石墨烯作为接触材料, 氮化硼作为间隔, 可以稳定制备垂直短沟道二硫化钼场效应晶体管. 基于此方法, 制备了8 nm氮化硼间隔的垂直短沟道二硫化钼场效应晶体管. 该器件展现出良好的开关特性, 在不同的源漏电压下其开关比大于107; 同时关态电流小于100 fA/μm, 对源漏直接隧穿效应有很好的抑制作用. 此外, 该方法同样适用于其他二维半导体短沟道晶体管的制备, 为快速筛选出可适用于超大规模集成的二维材料提供了一种有效途径.Field effect transistors (FETs) based on two-dimensional (2D) materials have great potential applications in very large-scale integration technology, and high-performance short channel 2D semiconductor FETs are essential. Owing to the difficulty in obtaining channel lengths below 10 nm for 2D materials, there are few stable methods of fabricating short channel 2D semiconductor FETs. Here we report a method of stably fabricating vertical short-channel MoS2 FETs by using graphene as the contact material and h-BN as the spacer. The 8-nm spacer transistor exhibits good switching characteristics. The on/off ratio is greater than 107 and the off-state current is less than 100 fA/μm under different source-drain voltages, which are immune well to the direct source-to-drain tunneling effect. This method can be used to rapidly screen two-dimensional materials that are immune to short-channel effects and also are suitable for the fabrication of high-performance FETs.
-
Keywords:
- two-dimensional materials /
- MoS2 /
- field effect transistor /
- short channel effect
[1] Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar
[2] Sakaki H, Noda T, Hirakawa K, Tanaka M, Matsusue T 1987 Appl. Phys. Lett. 51 1934Google Scholar
[3] Liu Y, Duan X, Shin H J, Park S, Huang Y, Duan X 2021 Nature 591 43Google Scholar
[4] Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T, Takagi S 2002 Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI n and p-MOSFETs with SOI Thickness Less than 5 nm (IEEE), San Francisco, CA, USA, December 8–11 2002 p47
[5] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar
[6] Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar
[7] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H P, Koppens F H L 2019 Nature 573 507Google Scholar
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[9] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H P, Javey A 2016 Science 354 99Google Scholar
[10] Nourbakhsh A, Zubair A, Huang S, Ling X, Dresselhaus M S, Kong J, De Gendt S, Palacios T 2015 2015 Symposium on VLSI Technology Digests of Technical Kyoto, Japan, June 16–18, 2015 p28
[11] Xie L, Liao M, Wang S, Yu H, Du L, Tang J, Zhao J, Zhang J, Chen P, Lu X, Wang G, Xie G, Yang R, Shi D, Zhang G 2017 Adv. Mater. 29 1702522Google Scholar
[12] Lingming Y, Kausik M, Yuchen D, Han L, Heng W, Hatzistergos M, Hung P Y, Robert T, Wilman T, Chris H, Peide D Y 2014 2014 Symposium on VLSI Technology Digest of Technical, Honolulu, HI, USA, June 9–12, 2014 p1
[13] Yang L, Lee R T P, Ra S S P, Tsai W, Ye P D 2015 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, June 21–24, 2015 p237
[14] Nourbakhsh A, Zubair A, Sajjad R N, Tavakkoli K G A, Chen W, Fang S, Ling X, Kong J, Dresselhaus M S, Kaxiras E, Berggren K K, Antoniadis D, Palacios T 2016 Nano Lett. 16 7798Google Scholar
[15] Xu K, Chen D, Yang F, Wang Z, Yin L, Wang F, Cheng R, Liu K, Xiong J, Liu Q, He J 2017 Nano Lett. 17 1065Google Scholar
[16] Liu Y, Guo J, Wu Y, Zhu E, Weiss N O, He Q, Wu H, Cheng H C, Xu Y, Shakir I, Huang Y, Duan X 2016 Nano Lett. 16 6337Google Scholar
[17] Cao W, Liu W, Kang J, Banerjee K 2016 IEEE Electron Device Lett. 37 1497Google Scholar
[18] Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, Ho J C, Pan C F, Xiao X H, Xiong J, Liao L 2017 Adv. Funct. Mater. 27 1602250Google Scholar
[19] Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar
[20] Jiang J, Doan M H, Sun L, Kim H, Yu H, Joo M K, Park S H, Yang H, Duong D L, Lee Y H 2020 Adv. Sci. 7 1902964Google Scholar
[21] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar
[22] Kawaura H, Sakamoto T, Baba T 2000 Appl. Phys. Lett. 76 3810Google Scholar
[23] Kawaura H, Baba T 2003 Jpn. J. Appl. Phys. 42 351Google Scholar
[24] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H, Peng L M 2018 Science 361 387Google Scholar
-
图 1 垂直沟道MoS2晶体管加工过程 (a) 机械剥离在300 nm SiO2衬底上的BN-A; (b) 干法转移后的石墨烯A/BN-A异质结; (c) RIE刻蚀后边界对齐的石墨烯A/BN-A异质结; (d) 边界对齐后石墨烯A/BN-A转移到石墨烯B上后形成的石墨烯A/BN-A/石墨烯B异质结; (e) 湿法转移MoS2到(d)上; (f) 转移BN-B到MoS2上作为顶栅介电层; (g) 沉积源漏栅极电极 (图中P++表示P型重掺杂)
Fig. 1. Fabrication process of vertical channel MoS2 transistors: (a) Mechanical exfoliation of BN-A on 300 nm SiO2 substrate; (b) transfer graphene-A/BN-A heterostructure; (c) aligned graphene-A/BN-A heterostructure after RIE etching; (d) transfer graphene-A/BN-A onto graphene-B; (e) transfer monolayer MoS2 onto (d) by wet transfer process; (f) transfer BN-B onto MoS2 as the top gate dielectric; (g) deposition of source, drain and gates electrodes (P++ represents P-type heavy doping).
图 2 8 nm垂直短沟道MoS2-FET结构 (a) 垂直短沟道晶体管的结构示意图, 红色虚线方框部分为晶体管垂直沟道区域; (b) 短沟道器件光学显微镜图; (c) 间隙BN-A的原子力显微镜测量图, 间隙BN厚度约为8 nm; (d) 刻蚀后氮化硼斜面截面透射电子显微镜图, 顶切角度为38°
Fig. 2. Structure of 8 nm vertical short-channel MoS2-FET: (a) Structure diagram of the vertical short-channel transistor, the red dotted box is the vertical channel region of the transistor; (b) optical microscope image of short-channel devices; (c) atomic force microscope image of spacer BN-A with a thickness is about 8 nm; (d) transmission electron microscope image of BN cross-section after etching, and the top-cut angle is 38°.
图 3 8 nm垂直沟道MoS2晶体管电学表征 (a) 不同源漏电压VDS下的转移特性曲线IDS-VGS, 亚阈值摆幅(SS) 约为0.4 V/dec; (b) 传输特性曲线IDS-VDS; (c) 晶体管阈值电压Vth随源漏电压VDS的变化; (d) 亚阈值摆幅随源漏电压VDS的变化
Fig. 3. Electrical characteristics of 8 nm vertical channel MoS2 transistor: (a) Transfer characteristic curve IDS-VGS with different VDS, subthreshold swing (SS) is about 0.4 V/dec; (b) output characteristic curve IDS-VDS; (c) threshold voltage Vth as a function of VDS; (d) subthreshold swing as a function of VDS.
-
[1] Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar
[2] Sakaki H, Noda T, Hirakawa K, Tanaka M, Matsusue T 1987 Appl. Phys. Lett. 51 1934Google Scholar
[3] Liu Y, Duan X, Shin H J, Park S, Huang Y, Duan X 2021 Nature 591 43Google Scholar
[4] Uchida K, Watanabe H, Kinoshita A, Koga J, Numata T, Takagi S 2002 Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI n and p-MOSFETs with SOI Thickness Less than 5 nm (IEEE), San Francisco, CA, USA, December 8–11 2002 p47
[5] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar
[6] Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar
[7] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H P, Koppens F H L 2019 Nature 573 507Google Scholar
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar
[9] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H P, Javey A 2016 Science 354 99Google Scholar
[10] Nourbakhsh A, Zubair A, Huang S, Ling X, Dresselhaus M S, Kong J, De Gendt S, Palacios T 2015 2015 Symposium on VLSI Technology Digests of Technical Kyoto, Japan, June 16–18, 2015 p28
[11] Xie L, Liao M, Wang S, Yu H, Du L, Tang J, Zhao J, Zhang J, Chen P, Lu X, Wang G, Xie G, Yang R, Shi D, Zhang G 2017 Adv. Mater. 29 1702522Google Scholar
[12] Lingming Y, Kausik M, Yuchen D, Han L, Heng W, Hatzistergos M, Hung P Y, Robert T, Wilman T, Chris H, Peide D Y 2014 2014 Symposium on VLSI Technology Digest of Technical, Honolulu, HI, USA, June 9–12, 2014 p1
[13] Yang L, Lee R T P, Ra S S P, Tsai W, Ye P D 2015 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, June 21–24, 2015 p237
[14] Nourbakhsh A, Zubair A, Sajjad R N, Tavakkoli K G A, Chen W, Fang S, Ling X, Kong J, Dresselhaus M S, Kaxiras E, Berggren K K, Antoniadis D, Palacios T 2016 Nano Lett. 16 7798Google Scholar
[15] Xu K, Chen D, Yang F, Wang Z, Yin L, Wang F, Cheng R, Liu K, Xiong J, Liu Q, He J 2017 Nano Lett. 17 1065Google Scholar
[16] Liu Y, Guo J, Wu Y, Zhu E, Weiss N O, He Q, Wu H, Cheng H C, Xu Y, Shakir I, Huang Y, Duan X 2016 Nano Lett. 16 6337Google Scholar
[17] Cao W, Liu W, Kang J, Banerjee K 2016 IEEE Electron Device Lett. 37 1497Google Scholar
[18] Yang Z Y, Liu X Q, Zou X M, Wang J L, Ma C, Jiang C Z, Ho J C, Pan C F, Xiao X H, Xiong J, Liao L 2017 Adv. Funct. Mater. 27 1602250Google Scholar
[19] Xiao X, Chen M, Zhang J, Zhang T, Zhang L, Jin Y, Wang J, Jiang K, Fan S, Li Q 2019 ACS Appl. Mater. Inter. 11 11612Google Scholar
[20] Jiang J, Doan M H, Sun L, Kim H, Yu H, Joo M K, Park S H, Yang H, Duong D L, Lee Y H 2020 Adv. Sci. 7 1902964Google Scholar
[21] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar
[22] Kawaura H, Sakamoto T, Baba T 2000 Appl. Phys. Lett. 76 3810Google Scholar
[23] Kawaura H, Baba T 2003 Jpn. J. Appl. Phys. 42 351Google Scholar
[24] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H, Peng L M 2018 Science 361 387Google Scholar
计量
- 文章访问数: 8023
- PDF下载量: 333
- 被引次数: 0