-
氧化镓在深紫外探测方面具有天然的材料优势, 鉴于探测器阵列在光学成像等领域有着十分重要的用途, 本文主要介绍了一个五叉指电极结构的4×4氧化镓基深紫外探测器阵列. 氧化镓薄膜由金属有机化学气相沉积技术生长得到, 器件的加工通过紫外光刻、剥离和离子束溅射技术完成. 由此得到的氧化镓薄膜结晶度高且表面均匀. 探测器具有优异的深紫外光响应特性, 光响应度可达2.65×103 A/W, 探测度达2.76×1016 Jones, 同时还具有(1.29×106)%的外量子效率, 光电导增益高达12900; 16个探测器单元的暗电流和光电流均具有良好的均匀性. 本文从光电性能和应用前景的角度说明了氧化镓深紫外探测器阵列的巨大应用潜力.Gallium oxide (Ga2O3) has the natural advantages in deep ultraviolet absorbance for performing deep ultraviolet photodetection. Owing to the vital application of photodetector array in optical imaging, in this work, we introduce a 4×4 Ga2O3-based photodetector array with five-finger interdigital electrodes, in which the high-quality and uniform Ga2O3 thin film is grown by using metal-organic chemical vapor deposition technique, and the device is fabricated by using the following methods: ultraviolet photolithography, lift-off, and ion beam sputtering . The photodetector cell possesses a responsivity of 2.65×103 A/W, a detectivity of 2.76×1016 Jones, an external quantum efficiency of (1.29×106)%, and a photoconductive gain as high as 12900. The 16-cells in this array show good uniformity. In this work the great application potential of gallium oxide deep ultraviolet detector array is illustrated from the perspective of optoelectronic performance and application prospect.
-
Keywords:
- gallium oxide /
- photodetector array /
- deep ultraviolet detection
[1] McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar
[2] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703Google Scholar
Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar
[3] Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar
[4] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar
[5] Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar
[6] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[7] Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar
[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[9] 刘增 2021 博士学位论文 (北京: 北京邮电大学)
Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[10] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar
[11] Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar
[12] 陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页
Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)
[13] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar
[14] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar
[15] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[16] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar
[17] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar
[18] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar
[19] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[20] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar
[21] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar
[22] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar
[23] Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar
[24] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar
[25] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar
[26] Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar
[27] 马海林, 苏庆 2014 物理学报 63 116701Google Scholar
Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar
[28] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar
Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar
[29] Wager J F 2003 Science 300 1245Google Scholar
[30] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar
Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar
[31] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[32] 欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170Google Scholar
Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar
[33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[34] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar
[35] Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar
[36] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar
-
-
[1] McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar
[2] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 物理学报 71 110703Google Scholar
Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar
[3] Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar
[4] Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar
[5] Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar
[6] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[7] Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar
[8] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[9] 刘增 2021 博士学位论文 (北京: 北京邮电大学)
Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[10] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar
[11] Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar
[12] 陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页
Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)
[13] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar
[14] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar
[15] Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar
[16] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar
[17] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar
[18] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar
[19] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[20] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar
[21] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar
[22] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar
[23] Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar
[24] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar
[25] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar
[26] Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar
[27] 马海林, 苏庆 2014 物理学报 63 116701Google Scholar
Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar
[28] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar
Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar
[29] Wager J F 2003 Science 300 1245Google Scholar
[30] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 物理学报 70 178503Google Scholar
Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar
[31] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar
Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar
[32] 欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 物理学报 55 2170Google Scholar
Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar
[33] Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar
[34] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar
[35] Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar
[36] Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar
计量
- 文章访问数: 6993
- PDF下载量: 177
- 被引次数: 0