搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯莫尔超晶格的晶格弛豫与衬底效应

詹真 张亚磊 袁声军

引用本文:
Citation:

石墨烯莫尔超晶格的晶格弛豫与衬底效应

詹真, 张亚磊, 袁声军

Lattice relaxation and substrate effects of graphene moiré superlattice

Zhan Zhen, Zhang Ya-Lei, Yuan Sheng-Jun
PDF
HTML
导出引用
  • 当两个晶格常数不同或具有相对转角的二维材料叠加在一起时, 可形成莫尔超晶格结构, 其电学性质对层间堆垛方式、旋转角度和衬底具有很强的依赖性. 例如, 双层石墨烯的旋转角度减小到一系列特定的值(魔角)时, 体系的费米面附近出现平带, 电子-电子相互作用显著增强, 出现莫特绝缘体和非常规超导量子物态. 对于具有长周期性的莫尔超晶格体系, 层间相互作用所引起的晶格弛豫会使原子偏离其平衡位置而发生重构. 本文主要围绕晶格自发弛豫和衬底对石墨烯莫尔超晶格物性的影响展开综述. 从理论和实验的角度出发, 阐述旋转双层石墨烯、旋转三层石墨烯、以及石墨烯与六方氮化硼堆垛异质结等体系中自发弛豫对其能带结构和物理性质的影响. 最后, 对二维莫尔超晶格体系的研究现状进行总结和展望.
    When two two-dimensional (2D) materials with different lattice constants or with different rotation angles are superimposed, a moiré superlattice can be constructed. The electronic properties of the superlattice are strongly dependent on the stacking configuration, twist angle and substrate. For instance, theoretically, when the rotation angle of twisted bilayer graphene is reduced to a set of specific values, the so-called magic angles, flat bands appear near the charge neutrality, and the electron-electron interaction is significantly enhanced. The Mott insulator and unconventional superconductivity are detected in the twisted bilayer graphene with a twist angle around 1.1°. For a moiré pattern with a large enough periodicity, lattice relaxation caused by an interplay between van der Waals force and the in-plane elasticity force comes into being. The atomic relaxation forces atoms to deviate from their equilibrium positions, and thus making the system reconstructed. This review mainly focuses on the effects of the lattice relaxation and substrates on the electronic properties of the graphene superlattices. From both theoretical and experimental point of view, the lattice relaxation effects on the atomic structure and electronic properties of graphene-based superlattices, for example, the twisted bilayer graphene, twisted trilayer graphene, graphene-hexagonal boron nitride superlattice and twisted bilayer graphene-boron nitride superlattice are discussed. Finally, a summary and perspective of the investigation of the 2D material superlattice are presented.
      通信作者: 袁声军, s.yuan@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174291, 12047543)和国家重点研发计划(批准号: 2018YFA0305800)资助的课题.
      Corresponding author: Yuan Sheng-Jun, s.yuan@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174291, 12047543) and the National Key R&D Program of China (Grant No. 2018YFA0305800).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Chang C, Chen W, Chen Y, et al. 2021 Acta Phys. Chim. Sin. 37 2108017Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233Google Scholar

    [5]

    Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C, He L 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [6]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [7]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [8]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [9]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [10]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [11]

    Zheng Z, Ma Q, Bi Z, et al. 2020 Nature 588 71Google Scholar

    [12]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [13]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2020 Science 367 900Google Scholar

    [14]

    Carr S, Massatt D, Fang S, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [15]

    Gargiulo F, Yazyev O V 2017 2D Mater. 5 015019

    [16]

    van Wijk M, Schuring A, Katsnelson M, Fasolino A 2015 2D Mater. 2 034010

    [17]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [18]

    Yoo H, Engelke R, Carr S, et al. 2019 Nat. Mater. 18 448Google Scholar

    [19]

    Shi H, Zhan Z, Qi Z, Huang K, Veen E V, Silva-Guillen J A, Zhang R, Li P, Xie K, Ji H, Katsnelson M I, Yuan S, Qin S, Zhang Z 2020 Nat. Commun. 11 371Google Scholar

    [20]

    Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E, LeRoy B J 2018 Phys. Rev. Lett. 121 037702Google Scholar

    [21]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Artaud A, Magaud L, Le Quang T, Guisset V, David P, Chapelier C, Coraux J 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Huder L, Artaud A, Le Quang T, de Laissardiere G T, Jansen A G M, Lapertot G, Chapelier C, Renard V T 2018 Phys. Rev. Lett. 120 156405Google Scholar

    [25]

    Dos Santos J L, Peres N, Neto A C 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [26]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [27]

    Koshino M, Yuan N F, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [28]

    Popov A M, Lebedeva I V, Knizhnik A A, Lozovik Y E, Potapkin B V 2011 Phys. Rev. B 84 045404Google Scholar

    [29]

    Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E, Potapkin B V 2011 Phys. Chem. Chem. Phys. 13 5687Google Scholar

    [30]

    Gould T, Lebegue S, Dobson J F 2013 J Phys. Condens. Matter. 25 445010Google Scholar

    [31]

    Slater J C, Koster G F 1954 Phys. Rev. 94 1498Google Scholar

    [32]

    Trambly de Laissardière G, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [33]

    Yuan S, De Raedt H, Katsnelson M I 2010 Phys. Rev. B 82 115448Google Scholar

    [34]

    Yuan S, Roldán R, Katsnelson M I 2011 Phys. Rev. B 84 035439Google Scholar

    [35]

    Logemann R, Reijnders K, Tudorovskiy T, Katsnelson M, Yuan S 2015 Phys. Rev. B 91 045420Google Scholar

    [36]

    Hams A, De Raedt H 2000 Phys. Rev. E 62 4365Google Scholar

    [37]

    Li Y, Zhan Z, Li Y, Yuan S 2022 arXiv:2209.00806 [cond-mat.mtrl-sci]

    [38]

    Brihuega I, Mallet P, Gonzalez-Herrero H, et al. 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [39]

    De Laissardiere G T, Mayou D, Magaud L 2012 Phys. Rev. B 86 125413Google Scholar

    [40]

    Guinea F, Walet N R 2019 Phys. Rev. B 99 205134Google Scholar

    [41]

    Slotman G J, van Wijk M M, Zhao P L, Fasolino A, Katsnelson M I, Yuan S 2015 Phys. Rev. Lett. 115 186801Google Scholar

    [42]

    Gadelha A C, Ohlberg D A A, Rabelo C, et al. 2021 Nature 590 405Google Scholar

    [43]

    Kuang X H, Zhan Z, Yuan S J 2021 Phys. Rev. B 103 115431Google Scholar

    [44]

    Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Velasco J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J, Wang F 2015 Nature 520 650Google Scholar

    [45]

    Sunku S, Ni G, Jiang B Y, Yoo H, Sternbach A, McLeod A, Stauber T, Xiong L, Taniguchi T, Watanabe K 2018 Science 362 1153Google Scholar

    [46]

    Zhang F, MacDonald A H, Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546Google Scholar

    [47]

    Xu S G, Berdyugin A I, Kumaravadivel P, et al. 2019 Nat. Commun. 10 4008Google Scholar

    [48]

    Verbakel J, Yao Q, Sotthewes K, Zandvliet H 2021 Phys. Rev. B 103 165134Google Scholar

    [49]

    Lu X, Lian B, Chaudhary G, Piot B A, Romagnoli G, Watanabe K, Taniguchi T, Poggio M, MacDonald A H, Bernevig B A, Efetov D K 2021 Proc. Natl. Acad. Sci. USA 118 e2100006118Google Scholar

    [50]

    Nguyen V H, Paszko D, Lamparski M, Van Troeye B, Meunier V, Charlier J C 2021 2D Mater. 8 035046

    [51]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [52]

    Los J H, Fasolino A 2003 Phys. Rev. B 68 024107Google Scholar

    [53]

    Kolmogorov A N, Crespi V H 2005 Phys. Rev. B 71 235415Google Scholar

    [54]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [55]

    Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [56]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [57]

    Chen G, Sharpe A L, Gallagher P, et al. 2019 Nature 572 215Google Scholar

    [58]

    Carr S, Li C, Zhu Z, Kaxiras E, Sachdev S, Kruchkov A 2020 Nano Lett. 20 3030Google Scholar

    [59]

    Mora C, Regnault N, Bernevig B A 2019 Phys. Rev. Lett. 123 026402Google Scholar

    [60]

    Zhu Z, Carr S, Massatt D, Luskin M, Kaxiras E 2020 Phys. Rev. Lett. 125 116404Google Scholar

    [61]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2021 Sci. Bull. 66 18Google Scholar

    [62]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [63]

    Rubio-Verdú C, Turkel S, Song Y, et al. 2022 Nat. Phys. 18 196Google Scholar

    [64]

    Wu Z, Zhan Z, Yuan S 2021 Sci. China Phys. Mech. Astron. 64 267811Google Scholar

    [65]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [66]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [67]

    Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [68]

    Zhang X, Tsai K T, Zhu Z, Ren W, Luo Y, Carr S, Luskin M, Kaxiras E, Wang K 2021 Phys. Rev. Lett. 127 166802Google Scholar

    [69]

    Turkel S, Swann J, Zhu Z, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, Pasupathy A N 2022 Science 376 193Google Scholar

    [70]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [71]

    Xu S, Al Ezzi M M, Balakrishnan N, et al. 2021 Nat. Phys. 17 619Google Scholar

    [72]

    Wu Z, Kuang X, Zhan Z, Yuan S 2021 Phys. Rev. B 104 205104Google Scholar

    [73]

    Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144Google Scholar

    [74]

    Kretinin A V, Cao Y, Tu J S, et al. 2014 Nano Lett. 14 3270Google Scholar

    [75]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803Google Scholar

    [76]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [77]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [78]

    San-Jose P, Gutiérrez-Rubio A, Sturla M, Guinea F 2014 Phys. Rev. B 90 075428Google Scholar

    [79]

    Van Wijk M, Schuring A, Katsnelson M, Fasolino A 2014 Phys. Rev. Lett. 113 135504Google Scholar

    [80]

    Ponomarenko L A, Gorbachev R V, Yu G L, et al. 2013 Nature 497 594Google Scholar

    [81]

    Dean C R, Wang L, Maher P, et al. 2013 Nature 497 598Google Scholar

    [82]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [83]

    Barrier J, Kumaravadivel P, Krishna Kumar R, et al. 2020 Nat. Commun. 11 5756Google Scholar

    [84]

    Wang L, Zihlmann S, Liu M H, Makk P, Watanabe K, Taniguchi T, Baumgartner A, Schönenberger C 2019 Nano Lett. 19 2371Google Scholar

    [85]

    Wang Z, Wang Y B, Yin J, et al. 2019 Sci. Adv. 5 eaay8897Google Scholar

    [86]

    Anđelković M, Milovanović S P, Covaci L, Peeters F M 2020 Nano Lett. 20 979Google Scholar

    [87]

    Yang Y, Li J, Yin J, Xu S, Mullan C, Taniguchi T, Watanabe K, Geim A K, Novoselov K S, Mishchenko A 2020 Sci. Adv. 6 eabd3655Google Scholar

    [88]

    Jung J, DaSilva A M, MacDonald A H, Adam S 2015 Nat. Commun. 6 6308Google Scholar

    [89]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461Google Scholar

    [90]

    Wang E, Lu X, Ding S, Yao W, Yan M, Wan G, Deng K, Wang S, Chen G, Ma L, Jung J, Fedorov A V, Zhang Y, Zhang G, Zhou S 2016 Nat. Phys. 12 1111Google Scholar

    [91]

    Han T, Yang J, Zhang Q, Wang L, Watanabe K, Taniguchi T, McEuen P L, Ju L 2021 Phys. Rev. Lett. 126 146402Google Scholar

    [92]

    Kim H, Leconte N, Chittari B L, Watanabe K, Taniguchi T, MacDonald A H, Jung J, Jung S 2018 Nano Lett. 18 7732Google Scholar

    [93]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [94]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [95]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [96]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Condens. Matter. Phys. 14 783Google Scholar

    [97]

    Ochoa H, Castro E V, Katsnelson M, Guinea F 2011 Phys. Rev. B 83 235416Google Scholar

    [98]

    Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar

    [99]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [100]

    Wallbank J, Patel A, Mucha-Kruczyński M, Geim A, Fal'Ko V 2013 Phys. Rev. B 87 245408Google Scholar

    [101]

    Park C H, Yang L, Son Y W, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 126804Google Scholar

    [102]

    Long M, Pantaleón P A, Zhan Z, Guinea F, Silva-Guillén J Á, Yuan S 2022 npj Comput. Mater. 8 1Google Scholar

    [103]

    Cea T, Pantaleón P A, Guinea F 2020 Phys. Rev. B 102 155136Google Scholar

    [104]

    Mao D, Senthil T 2021 Phys. Rev. B 103 115110Google Scholar

    [105]

    Shin J, Park Y, Chittari B L, Sun J H, Jung J 2021 Phys. Rev. B 103 075423Google Scholar

    [106]

    Ramires A, Lado J L 2019 Phys. Rev. B 99 245118Google Scholar

    [107]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [108]

    Zhan Z, Zhang Y, Lv P, Zhong H, Yu G, Guinea F, Silva-Guillén J Á, Yuan S 2020 Phys. Rev. B 102 241106Google Scholar

    [109]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [110]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [111]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [112]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [113]

    Ghiotto A, Shih E M, Pereira G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [114]

    Weston A, Castanon E G, Enaldiev V, et al. 2022 Nat. Nanotechnol. 17 390Google Scholar

  • 图 2  (a) $ \theta =0.48^{\circ} $的TBG的STM形貌图 (100 nm $ \times $ 100 nm, 超晶格格矢$ L1\approx L2\approx L3\approx 29.6 $ nm, STM图在V = 100 mV和It = 1.0 nA下采集); (b) 超晶格结构中AAAB区域的STS, 两条实(虚)线表示探测不同AA (AB)位置的STS, 证明实验数据的可重复性; (c) TBG非弛豫结构(上)和弛豫结构(下)中AAAB区域的LDOS; (d) 形变势能V的分布; (e) 赝磁场B的分布; (f) $ \theta =0.48^{\circ} $的TBG理论计算模型图; (g) 路径M-N-P上原子在平面内(|Δd|)和z方向上(|Δz|)的位移; (h), (i) 原子分别在平面内(h)和z方向上(i)位移的实空间分布图[19]

    Fig. 2.  (a) STM topography image (100 nm $ \times $ 100 nm) for TBG with $ \theta =0.48^{\circ} $ (The three moiré wavelengths are $ L1\approx L2\approx L3\approx 29.6 $ nm, sample bias $ V=100 $ mV, tunneling current $ {I}_{\mathrm{t}}=1.0 $ nA); (b) logarithmic dI/dV spectra measured at AA and AB regions (The two solid/dashed lines were taken at different AA/AB regions to show reproducibility, and curves are vertically shifted for clarity); (c) calculated LDOS in the AA and AB regions for deformed (upper) and rigidly twisted (bottom) cases; (d) calculated local potential V; (e) calculated pseudo-magnetic fields B; (f) schematic model of the moiré pattern of TBG with $ \theta =0.48^{\circ} $; (g) absolute magnitude of different in-plane atomic displacements and out-of-plane displacements for the deformed system along the path M-N-P; (h), (i) maps of the absolute magnitude of the in-plane atomic displacement |Δd| (h) and out-of-plane displacement |Δz| (i) in deformed systems[19].

    图 1  $ \theta =6.01^{\circ} $时TBG结构示意图(黑色实线框表示莫尔超晶格的原胞; 圆圈表示4种高对称堆垛结构, 分别为AA堆垛(红色)、AB堆垛(蓝色)、DW堆垛(紫色)和BA堆垛(绿色))

    Fig. 1.  Schematics of the atomic configuration of TBG with$ \theta =6.01^{\circ} $ (The moiré supercell is outlined in black line. High-symmetry stacking regions of AA, AB, DW and BA are marked by the red, blue, purple and green circles, respectively).

    图 3  (a)—(c) $ \theta =1.05^{\circ}\mathrm{ }\left(\mathrm{a}\right) $, $ \theta =0.53^{\circ}\mathrm{ }\left(\mathrm{b}\right) $$ \theta =0.35^{\circ}\mathrm{ }\left(\mathrm{c}\right) $的面内应变张量$ \mathit{u}\left(\mathit{r}\right) $(白色箭头表示原子在平面内的位移矢量; 彩色条表示原子在面内的旋转角度$\Delta \theta =\nabla \times {\boldsymbol u }$, 正值表示顺时针旋转; 莫尔结构的晶胞由黑色边框标记; 3个高对称区域分别是AA, ABDW); (d)—(f) $ \theta =1.05^{\circ} $ (d), $ \theta =0.53^{\circ} $ (e)和$ \theta =0.35^{\circ} $ (f)的层间距(ILS)在实空间的分布

    Fig. 3.  (a)–(c) In-plane strain $ \mathit{u}\left(\mathit{r}\right) $ in twisted bilayer graphene with (a) $ \theta =1.05^{\circ} $, (b) $ \theta =0.53^{\circ} $ and (c) $ \theta =0.35^{\circ} $ (The in-plane displacements are visualized with white arrows; the color data denotes the local value of the in-plane twist of the atoms with respect to their original position ($\Delta \theta =\nabla \times {\boldsymbol u})$, and the positive values indicate counterclockwise rotation. The moiré supercell is outlined in black, and the high-symmetry stacking regions of AA, AB and DW are illustrated); (d)–(f) the interlayer spacing of TBG with (d) $ \theta =1.05^{\circ} $, (e) $ \theta =0.53^{\circ} $ and (f) $ \theta =0.35^{\circ} $.

    图 4  (a), (d), (g) 三类魔角的DOS分布; (b), (e), (h) 三类魔角非弛豫体系中不同能量下LDOS在实空间的分布; (c), (f), (i) 三类魔角弛豫体系中不同能量下LDOS在实空间的分布. 其中(a)—(c)$ \theta =1.05^{\circ} $; (d)—(f) $ \theta =0.53^{\circ} $; (g)—(i) $ \theta =0.35^{\circ} $

    Fig. 4.  (a), (d), (g) DOS distributions of three types of magic angles; (b), (e), (h) LDOS distributions in real space at different energies in non-relaxation systems of three types of magic angle non-relaxation systems; (c), (f), (i) LDOS distributions in real space at different energies in relaxation systems of three types of magic angle. The rotation angle θ is 1.05° (a)–(c), 0.53° (d)–(f), 0.35° (g)–(i).

    图 5  (a) tTLG-AÃA-6.01体系的侧视图(上)和俯视图(下); (b), (c) 分别为tTLG-AÃA-1.35体系和tTLG-ÃAB-1.05体系中原子在z方向的位移Δz; (d)—(f) tTLG-AÃA-1.35体系中DOS (d)和不同能量点LDOS (e), (f)在实空间的分布; (g)—(i) tTLG-ÃAB-1.05体系中DOS (g)和不同能量点LDOS (h), (i)在实空间的分布[64]

    Fig. 5.  (a) Side (upper) and top (lower) views of tTLG-AÃA-6.01; (b), (c) the displacement Δz of atoms in the z direction for tTLG-AÃA-1.35 and tTLG-ÃAB-1.05, respectively; (d)–(f) distribution of DOS (d) and LDOS at different energy points in real space (e), (f) of tTLG-AÃA-1.35. (g)–(i) distribution of DOS (g) and LDOS at different energy points in real space (h), (i) of tTLG-ÃAB-1.05[64].

    图 6  (a), (c) tTLG-AÃA-1.89体系分别在常压和4 GPa高压条件下原子在z方向的位移Δz; (b), (e) 体系在常压条件下的能带、DOS (b)和范霍夫奇点处LDOS在实空间的分布(e); (d), (f) 体系在4 GPa高压条件下的能带、DOS (d)和范霍夫奇点处LDOS在实空间的分布(f)[72]

    Fig. 6.  (a), (c) Out-of-plane displacement Δz of relaxed tTLG-AÃA-1.89 without and with 4 GPa vertical pressure, respectively; (b), (e) the band structure, DOS (b) and LDOS mappings of van Hove singularities (e) of tTLG-AÃA-1.89 under ambient pressure; (d), (f) the band structure, DOS (d) and LDOS mappings of van Hove singularities (f) of tTLG-AÃA-1.89 with 4 GPa pressure[72].

    图 7  (a), (b) 石墨烯/氮化硼之间转角$ \theta =0^{\circ} $的体系在晶格弛豫后的紧束缚模型参数(λ = 13.8 nm; 从左到右分别为在位能$ {V}_{D} $和碳原子最近邻的跃迁振幅t1, t2, t3, 彩色条的单位是t = 2.7 eV); (c) 非弛豫和弛豫结构石墨烯的DOS分布; (d) 不同$ \theta $下的DOS (箭头表示超晶格狄拉克点随转角的减小而向高能部分移动; 当$ \theta =1.85^{\circ} $, 超晶格狄拉克点消失; 相应的莫尔长度分别为 λ = 13.8, 11.9, 6.7 nm); (e) 转角$ \theta =0^{\circ} $时不同能量下的准本征态在实空间的分布 (左侧和右侧分别是A子晶格和B子晶格的准本征态; 对于接近超晶格狄拉克点的能量, 可以形成一个清晰的莫尔条纹[41])

    Fig. 7.  (a), (b) Modified tight-binding parameters for a relaxed sample of graphene on hBN with θ = 0° (λ = 13.8 nm; from left to right, the on-site potential $ {V}_{D} $ and the hopping parameters t1, t2, and t3. The color bars are in units of t = 2.7 eV); (c) DOS distributions of unrelaxed and relaxed graphene; (d) DOS for different angles θ (As indicated by the arrows, superlattice Dirac point moves towards the high-energy part with the decreasing of the turning angle; the superlattice Dirac point disappears at $ \theta =1.85^{\circ} $. The corresponding moiré lengths λ = 13.8, 11.9, 6.7 nm, respectively); (e) amplitude of the quasi eigenstates for different energies in real space for θ = 0° (The left-hand panels show sublattice A and the right-hand panels show sublattice B. For energies closer to the extra Dirac cones, a clear moiré pattern can be distinguished)[41].

    图 8  (a) TBG/hBN的结构示意图; (b) TBG/hBN的俯视图和高对称堆垛结构; (c) 不同$ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $ 体系的面内形变u(r)和面内转角$\Delta \theta =\nabla \times {\boldsymbol u}$, 白色箭头是原子的面内位移; (d)—(f) 不同$ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $体系的能带图和DOS (彩色条表示每个谷$ \langle{{\widehat{V}}_{z}}\rangle $的带, 如果属于K谷状态(红色), 则$\langle{{\widehat{V}}_{z}}\rangle \approx 1$, 如果属于K'谷状态(蓝色), 则$\langle{{\widehat{V}}_{z}}\rangle \approx -1$); (g), (h) 晶格重构引起的形变势能$ {V}_{D} $与赝磁场${\boldsymbol B}=\nabla \times {\boldsymbol A}$ (红色箭头代表矢势A(r), TBG的转角固定为$ 1.05^{\circ} $[102])

    Fig. 8.  (a) Schematic of the atomic configuration of TBG/hBN; (b) top view and high-symmetry stacking regions of the atomic configuration of TBG/hBN; (c) in-plane strain u(r) and in-plane rotation angle $\Delta \theta =\nabla \times {\boldsymbol u}$ with varying $ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $ (The in-plane displacements are visualized with white arrows); (d)–(f) band structure and DOS of TBG/hBN with different $ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $ (The color bar denotes the band for each valley $ \langle{{\widehat{V}}_{z}}\rangle $ with $ \langle{{\widehat{V}}_{z}}\rangle\approx 1 $ if a state belongs to valley K and $ \langle{{\widehat{V}}_{z}}\rangle\approx -1 $ if a state belongs to valley K'); (g) the deformation potential $ {V}_{D} $ and (h) pseudo-magnetic field ${\boldsymbol B}=\nabla \times {\boldsymbol A}$ induced by lattice relaxations in the TBG/hBN with $ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}}=0.53^{\circ} $ (The vector field A(r) is visualized with red arrows in (h) TBG is fixed to $ {\theta }_{\mathrm{t}\mathrm{b}\mathrm{g}}=1.05^{\circ} $ in all cases)[102].

    图 9  (a) 三明治结构hBN/TBG/hBN的形貌图和高对称堆垛结构; (b)—(d) 不同$ {\theta }_{\mathrm{t}\mathrm{o}\mathrm{p}} $$ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $组成体系的(从左到右)能带图、面内转角、形变势能和赝磁场 (TBG的转角固定为$ {\theta }_{\mathrm{t}\mathrm{b}\mathrm{g}}=1.05^{\circ} $)[102]

    Fig. 9.  (a) Schematic structure of the hBN/TBG/hBN system and the different high-symmetry stackings in the superlattice; (b)–(d) panels from left to right display the band structure, in-plane twist of the atoms with respect to their original position, scalar potential and pseudo-magnetic field of the systems with different $ {\theta }_{\mathrm{t}\mathrm{o}\mathrm{p}} $ and $ {\theta }_{\mathrm{b}\mathrm{o}\mathrm{t}} $ (TBG is fixed to $ 1.05^{\circ} $[102]).

  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    Chang C, Chen W, Chen Y, et al. 2021 Acta Phys. Chim. Sin. 37 2108017Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233Google Scholar

    [5]

    Yan W, Liu M, Dou R F, Meng L, Feng L, Chu Z D, Zhang Y, Liu Z, Nie J C, He L 2012 Phys. Rev. Lett. 109 126801Google Scholar

    [6]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [7]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [8]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [9]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301Google Scholar

    [10]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [11]

    Zheng Z, Ma Q, Bi Z, et al. 2020 Nature 588 71Google Scholar

    [12]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [13]

    Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A 2020 Science 367 900Google Scholar

    [14]

    Carr S, Massatt D, Fang S, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [15]

    Gargiulo F, Yazyev O V 2017 2D Mater. 5 015019

    [16]

    van Wijk M, Schuring A, Katsnelson M, Fasolino A 2015 2D Mater. 2 034010

    [17]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [18]

    Yoo H, Engelke R, Carr S, et al. 2019 Nat. Mater. 18 448Google Scholar

    [19]

    Shi H, Zhan Z, Qi Z, Huang K, Veen E V, Silva-Guillen J A, Zhang R, Li P, Xie K, Ji H, Katsnelson M I, Yuan S, Qin S, Zhang Z 2020 Nat. Commun. 11 371Google Scholar

    [20]

    Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E, LeRoy B J 2018 Phys. Rev. Lett. 121 037702Google Scholar

    [21]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [22]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [23]

    Artaud A, Magaud L, Le Quang T, Guisset V, David P, Chapelier C, Coraux J 2016 Sci. Rep. 6 1Google Scholar

    [24]

    Huder L, Artaud A, Le Quang T, de Laissardiere G T, Jansen A G M, Lapertot G, Chapelier C, Renard V T 2018 Phys. Rev. Lett. 120 156405Google Scholar

    [25]

    Dos Santos J L, Peres N, Neto A C 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [26]

    Koshino M 2015 New J. Phys. 17 015014Google Scholar

    [27]

    Koshino M, Yuan N F, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [28]

    Popov A M, Lebedeva I V, Knizhnik A A, Lozovik Y E, Potapkin B V 2011 Phys. Rev. B 84 045404Google Scholar

    [29]

    Lebedeva I V, Knizhnik A A, Popov A M, Lozovik Y E, Potapkin B V 2011 Phys. Chem. Chem. Phys. 13 5687Google Scholar

    [30]

    Gould T, Lebegue S, Dobson J F 2013 J Phys. Condens. Matter. 25 445010Google Scholar

    [31]

    Slater J C, Koster G F 1954 Phys. Rev. 94 1498Google Scholar

    [32]

    Trambly de Laissardière G, Mayou D, Magaud L 2010 Nano Lett. 10 804Google Scholar

    [33]

    Yuan S, De Raedt H, Katsnelson M I 2010 Phys. Rev. B 82 115448Google Scholar

    [34]

    Yuan S, Roldán R, Katsnelson M I 2011 Phys. Rev. B 84 035439Google Scholar

    [35]

    Logemann R, Reijnders K, Tudorovskiy T, Katsnelson M, Yuan S 2015 Phys. Rev. B 91 045420Google Scholar

    [36]

    Hams A, De Raedt H 2000 Phys. Rev. E 62 4365Google Scholar

    [37]

    Li Y, Zhan Z, Li Y, Yuan S 2022 arXiv:2209.00806 [cond-mat.mtrl-sci]

    [38]

    Brihuega I, Mallet P, Gonzalez-Herrero H, et al. 2012 Phys. Rev. Lett. 109 196802Google Scholar

    [39]

    De Laissardiere G T, Mayou D, Magaud L 2012 Phys. Rev. B 86 125413Google Scholar

    [40]

    Guinea F, Walet N R 2019 Phys. Rev. B 99 205134Google Scholar

    [41]

    Slotman G J, van Wijk M M, Zhao P L, Fasolino A, Katsnelson M I, Yuan S 2015 Phys. Rev. Lett. 115 186801Google Scholar

    [42]

    Gadelha A C, Ohlberg D A A, Rabelo C, et al. 2021 Nature 590 405Google Scholar

    [43]

    Kuang X H, Zhan Z, Yuan S J 2021 Phys. Rev. B 103 115431Google Scholar

    [44]

    Ju L, Shi Z W, Nair N, Lv Y C, Jin C H, Velasco J, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J, Wang F 2015 Nature 520 650Google Scholar

    [45]

    Sunku S, Ni G, Jiang B Y, Yoo H, Sternbach A, McLeod A, Stauber T, Xiong L, Taniguchi T, Watanabe K 2018 Science 362 1153Google Scholar

    [46]

    Zhang F, MacDonald A H, Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546Google Scholar

    [47]

    Xu S G, Berdyugin A I, Kumaravadivel P, et al. 2019 Nat. Commun. 10 4008Google Scholar

    [48]

    Verbakel J, Yao Q, Sotthewes K, Zandvliet H 2021 Phys. Rev. B 103 165134Google Scholar

    [49]

    Lu X, Lian B, Chaudhary G, Piot B A, Romagnoli G, Watanabe K, Taniguchi T, Poggio M, MacDonald A H, Bernevig B A, Efetov D K 2021 Proc. Natl. Acad. Sci. USA 118 e2100006118Google Scholar

    [50]

    Nguyen V H, Paszko D, Lamparski M, Van Troeye B, Meunier V, Charlier J C 2021 2D Mater. 8 035046

    [51]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [52]

    Los J H, Fasolino A 2003 Phys. Rev. B 68 024107Google Scholar

    [53]

    Kolmogorov A N, Crespi V H 2005 Phys. Rev. B 71 235415Google Scholar

    [54]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [55]

    Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [56]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [57]

    Chen G, Sharpe A L, Gallagher P, et al. 2019 Nature 572 215Google Scholar

    [58]

    Carr S, Li C, Zhu Z, Kaxiras E, Sachdev S, Kruchkov A 2020 Nano Lett. 20 3030Google Scholar

    [59]

    Mora C, Regnault N, Bernevig B A 2019 Phys. Rev. Lett. 123 026402Google Scholar

    [60]

    Zhu Z, Carr S, Massatt D, Luskin M, Kaxiras E 2020 Phys. Rev. Lett. 125 116404Google Scholar

    [61]

    Ma Z, Li S, Zheng Y W, Xiao M M, Jiang H, Gao J H, Xie X 2021 Sci. Bull. 66 18Google Scholar

    [62]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Lett. 20 2410Google Scholar

    [63]

    Rubio-Verdú C, Turkel S, Song Y, et al. 2022 Nat. Phys. 18 196Google Scholar

    [64]

    Wu Z, Zhan Z, Yuan S 2021 Sci. China Phys. Mech. Astron. 64 267811Google Scholar

    [65]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [66]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [67]

    Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [68]

    Zhang X, Tsai K T, Zhu Z, Ren W, Luo Y, Carr S, Luskin M, Kaxiras E, Wang K 2021 Phys. Rev. Lett. 127 166802Google Scholar

    [69]

    Turkel S, Swann J, Zhu Z, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, Pasupathy A N 2022 Science 376 193Google Scholar

    [70]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [71]

    Xu S, Al Ezzi M M, Balakrishnan N, et al. 2021 Nat. Phys. 17 619Google Scholar

    [72]

    Wu Z, Kuang X, Zhan Z, Yuan S 2021 Phys. Rev. B 104 205104Google Scholar

    [73]

    Carr S, Fang S, Jarillo-Herrero P, Kaxiras E 2018 Phys. Rev. B 98 085144Google Scholar

    [74]

    Kretinin A V, Cao Y, Tu J S, et al. 2014 Nano Lett. 14 3270Google Scholar

    [75]

    Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, Kelly P J 2008 Phys. Rev. Lett. 101 026803Google Scholar

    [76]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [77]

    Moon P, Koshino M 2014 Phys. Rev. B 90 155406Google Scholar

    [78]

    San-Jose P, Gutiérrez-Rubio A, Sturla M, Guinea F 2014 Phys. Rev. B 90 075428Google Scholar

    [79]

    Van Wijk M, Schuring A, Katsnelson M, Fasolino A 2014 Phys. Rev. Lett. 113 135504Google Scholar

    [80]

    Ponomarenko L A, Gorbachev R V, Yu G L, et al. 2013 Nature 497 594Google Scholar

    [81]

    Dean C R, Wang L, Maher P, et al. 2013 Nature 497 598Google Scholar

    [82]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [83]

    Barrier J, Kumaravadivel P, Krishna Kumar R, et al. 2020 Nat. Commun. 11 5756Google Scholar

    [84]

    Wang L, Zihlmann S, Liu M H, Makk P, Watanabe K, Taniguchi T, Baumgartner A, Schönenberger C 2019 Nano Lett. 19 2371Google Scholar

    [85]

    Wang Z, Wang Y B, Yin J, et al. 2019 Sci. Adv. 5 eaay8897Google Scholar

    [86]

    Anđelković M, Milovanović S P, Covaci L, Peeters F M 2020 Nano Lett. 20 979Google Scholar

    [87]

    Yang Y, Li J, Yin J, Xu S, Mullan C, Taniguchi T, Watanabe K, Geim A K, Novoselov K S, Mishchenko A 2020 Sci. Adv. 6 eabd3655Google Scholar

    [88]

    Jung J, DaSilva A M, MacDonald A H, Adam S 2015 Nat. Commun. 6 6308Google Scholar

    [89]

    Chen Z G, Shi Z, Yang W, Lu X, Lai Y, Yan H, Wang F, Zhang G, Li Z 2014 Nat. Commun. 5 4461Google Scholar

    [90]

    Wang E, Lu X, Ding S, Yao W, Yan M, Wan G, Deng K, Wang S, Chen G, Ma L, Jung J, Fedorov A V, Zhang Y, Zhang G, Zhou S 2016 Nat. Phys. 12 1111Google Scholar

    [91]

    Han T, Yang J, Zhang Q, Wang L, Watanabe K, Taniguchi T, McEuen P L, Ju L 2021 Phys. Rev. Lett. 126 146402Google Scholar

    [92]

    Kim H, Leconte N, Chittari B L, Watanabe K, Taniguchi T, MacDonald A H, Jung J, Jung S 2018 Nano Lett. 18 7732Google Scholar

    [93]

    Bultinck N, Chatterjee S, Zaletel M P 2020 Phys. Rev. Lett. 124 166601Google Scholar

    [94]

    Zhang Y H, Mao D, Senthil T 2019 Phys. Rev. Res. 1 033126Google Scholar

    [95]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [96]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Condens. Matter. Phys. 14 783Google Scholar

    [97]

    Ochoa H, Castro E V, Katsnelson M, Guinea F 2011 Phys. Rev. B 83 235416Google Scholar

    [98]

    Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy B J 2011 Nat. Mater. 10 282Google Scholar

    [99]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [100]

    Wallbank J, Patel A, Mucha-Kruczyński M, Geim A, Fal'Ko V 2013 Phys. Rev. B 87 245408Google Scholar

    [101]

    Park C H, Yang L, Son Y W, Cohen M L, Louie S G 2008 Phys. Rev. Lett. 101 126804Google Scholar

    [102]

    Long M, Pantaleón P A, Zhan Z, Guinea F, Silva-Guillén J Á, Yuan S 2022 npj Comput. Mater. 8 1Google Scholar

    [103]

    Cea T, Pantaleón P A, Guinea F 2020 Phys. Rev. B 102 155136Google Scholar

    [104]

    Mao D, Senthil T 2021 Phys. Rev. B 103 115110Google Scholar

    [105]

    Shin J, Park Y, Chittari B L, Sun J H, Jung J 2021 Phys. Rev. B 103 075423Google Scholar

    [106]

    Ramires A, Lado J L 2019 Phys. Rev. B 99 245118Google Scholar

    [107]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [108]

    Zhan Z, Zhang Y, Lv P, Zhong H, Yu G, Guinea F, Silva-Guillén J Á, Yuan S 2020 Phys. Rev. B 102 241106Google Scholar

    [109]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [110]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [111]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [112]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [113]

    Ghiotto A, Shih E M, Pereira G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [114]

    Weston A, Castanon E G, Enaldiev V, et al. 2022 Nat. Nanotechnol. 17 390Google Scholar

  • [1] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [2] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [3] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [4] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展. 物理学报, 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [5] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构. 物理学报, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [6] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [7] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [8] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [9] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [10] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [11] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [12] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [13] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [14] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [16] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [17] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [18] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 陈光华, 邓金祥, 张生俊, 宋雪梅, 王波, 严辉. 衬底材料对制备立方氮化硼薄膜的影响. 物理学报, 2001, 50(1): 83-87. doi: 10.7498/aps.50.83
计量
  • 文章访问数:  5484
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-03
  • 修回日期:  2022-06-04
  • 上网日期:  2022-09-13
  • 刊出日期:  2022-09-20

/

返回文章
返回