-
较系统地研究了不同衬底材料对制备立方氮化硼薄膜的影响,用热丝增强射频等离子体CVD法,以NH3、B2H和H2为反应气体在Si、Ni、Co和不锈钢等衬底材料上,成功生长出高质量的立方氮化硼薄膜,还用13.56MHz的射频溅射系统将c-BN薄膜沉积在Si衬底上,靶材为h-BN(纯度99.99%),溅射气体为氩气和氮气的混合气体,所得到的氮化硼薄膜中立方相含量高于90%。用X射线衍射谱和傅里叶变换红外谱对样品进行的分析表明,衬底材料与c-BN的晶格匹配情况,对于CVD生长立方氮化硼薄膜影响很大,而对溅射生长立方氮化硼薄膜影响不大。The influence of substrates on the formation of cubic boron nitride(c-BN) thin films was reported. The c-BN thin films were deposited on different substrates with hot-filament-assisted plasma CVD and RF sputter. In the CVD method, NH3,B2H6 and H2 were reacting gases and Si,Ni,Co,stainless steel and other materials were substrates. The experiments showed that the cubic phase content in c-BN thin films was affected by substrates. The film on Ni substrate was the best among all the substrates in the CVD method, and its cubic phase content reached over 80%. Our study also found that in the CVD method a Ni interlayer on the Si substrate can improve the quality of the c-BN thin films than directly on Si substrate. In the sputter method, the working gas was N2 and Ar, hot-pressed hexagonal boron nitride(h-BN) of 4N purity was used as sputtering target, the c-BN thin film with over 90% content of cubic phase was successively deposited on Si substrate. In our research, the boron nitride thin films were characterized by Fourier Transform Infrared(FTIR) Spectra and X-ray diffraction.Finally we concluded that for CVD method the cubic phase content and adhesion are highly affected by the crystal lattice mismatch between c-BN and substrate materials; however, for sputter method the crystal lattice mismatch between c-BN and substrate materials little affects the quality of c-BN thin films.
-
Keywords:
- c-BN thin film /
- substrate /
- hot filament CVD /
- RF sputter
[1] Z.Z.Song et al., Physics, 24(1995), 307(in Chinese)[宋志忠、郭永平、张仿清、陈光华,物理,24(1995),307].
[2] M.Sokolowski, J.Cryst.Growth, 46(1979), 136.
[3] F.ZhangY. Guo, Z.Song, G.Chen, Appl.Phys.Lett., 65(1994), 971.
[4] P.B. Mirkarimi, K.F. McCarty, G.F. Cardinale, D.L. Medlin, D.K. Ottesen, H.A.Johnsen, J.V ac.Sci.Technol., A14(1996) 251.
[5] H.Luthjie, K.Bewilogua, S.Daaud et al., Thin Solid Films, 257(1995), 40.
[6] M.Okamoto, Y.Utisumi, Y.OsakaJpn., J.Appl.Phys., 29(1990), L1004.
[7] P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Mater.Sci.Engin., R21(1997), 47.
[8] T.A. Friedmann, P.B. Mirkarimi, D.L. Medlin, K.F. McCarty, E.J. Klaus, D. Boehme, H.A. Johnsen, M.J. Mills, D.K. Ottesen, J.Appl.Phys., 76(1994), 3088.
[9] P.B. Mirkarimi, K.F. McCary, D.L. Medlin, W.G. Wolf, T.A. Friedmann, E.J.Klaus, G.F.Cardinale, D.G.Howitt, J. Mater.Res., 9(1994), 2925.
[10] Z.Song, F.Zhang, Y.Guo, G.Chen, Appl.Phys.Lett., 65(1994), 2669.
[11] G.H. Chen et al., Chinese Science Bulletin, 40(1995), 499(in Chinese)[陈光华、郭永平等,科学通报,40(1995),499].
[12] Jin-xiang Deng, Bo Wang, Li-wen Tan, Hui Yan, Guang-hua Chen, Thin Solid Films, 368(2000), 317.
-
[1] Z.Z.Song et al., Physics, 24(1995), 307(in Chinese)[宋志忠、郭永平、张仿清、陈光华,物理,24(1995),307].
[2] M.Sokolowski, J.Cryst.Growth, 46(1979), 136.
[3] F.ZhangY. Guo, Z.Song, G.Chen, Appl.Phys.Lett., 65(1994), 971.
[4] P.B. Mirkarimi, K.F. McCarty, G.F. Cardinale, D.L. Medlin, D.K. Ottesen, H.A.Johnsen, J.V ac.Sci.Technol., A14(1996) 251.
[5] H.Luthjie, K.Bewilogua, S.Daaud et al., Thin Solid Films, 257(1995), 40.
[6] M.Okamoto, Y.Utisumi, Y.OsakaJpn., J.Appl.Phys., 29(1990), L1004.
[7] P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Mater.Sci.Engin., R21(1997), 47.
[8] T.A. Friedmann, P.B. Mirkarimi, D.L. Medlin, K.F. McCarty, E.J. Klaus, D. Boehme, H.A. Johnsen, M.J. Mills, D.K. Ottesen, J.Appl.Phys., 76(1994), 3088.
[9] P.B. Mirkarimi, K.F. McCary, D.L. Medlin, W.G. Wolf, T.A. Friedmann, E.J.Klaus, G.F.Cardinale, D.G.Howitt, J. Mater.Res., 9(1994), 2925.
[10] Z.Song, F.Zhang, Y.Guo, G.Chen, Appl.Phys.Lett., 65(1994), 2669.
[11] G.H. Chen et al., Chinese Science Bulletin, 40(1995), 499(in Chinese)[陈光华、郭永平等,科学通报,40(1995),499].
[12] Jin-xiang Deng, Bo Wang, Li-wen Tan, Hui Yan, Guang-hua Chen, Thin Solid Films, 368(2000), 317.
计量
- 文章访问数: 2338
- PDF下载量: 20
- 被引次数: 0