搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衬底材料对制备立方氮化硼薄膜的影响

陈光华 邓金祥 张生俊 宋雪梅 王波 严辉

引用本文:
Citation:

衬底材料对制备立方氮化硼薄膜的影响

陈光华, 邓金祥, 张生俊, 宋雪梅, 王波, 严辉

INFLUENCE OF SUBSTRATES ON THE FORMATION OF c-BN THIN FILMS

CHEN GUANG-HUA, DENG JIN-XIANG, ZHANG SHENG-JUN, SONG XUE-MEI, WANG BO, YAN HUI
PDF
导出引用
  • 较系统地研究了不同衬底材料对制备立方氮化硼薄膜的影响,用热丝增强射频等离子体CVD法‚,以NH、B2H和H2为反应气体‚在Si‚、Ni、‚Co和不锈钢等衬底材料上‚,成功生长出高质量的立方氮化硼薄膜,还用13.56MHz的射频溅射系统将c-BN薄膜沉积在Si衬底上‚,靶材为h-BN(纯度99.99%)‚,溅射气体为氩气和氮气的混合气体‚,所得到的氮化硼薄膜中立方相含量高于90%。用X射线衍射谱和傅里叶变换红外谱对样品进行的分析表明‚,衬底材料与c-BN的晶格匹配情况‚,对于CVD生长立方氮化硼薄膜影响很大‚,而对溅射生长立方氮化硼薄膜影响不大。
    The influence of substrates on the formation of cubic boron nitride(c-BN) thin films was reported. The c-BN thin films were deposited on different substrates with hot-filament-assisted plasma CVD and RF sputter. In the CVD method‚, NH,B2H6 and H2 were reacting gases‚ and Si‚,Ni‚,Co‚,stainless steel and other materials were substrates. The experiments showed that the cubic phase content in c-BN thin films was affected by substrates. The film on Ni substrate was the best among all the substrates in the CVD method‚, and its cubic phase content reached over 80%. Our study also found that in the CVD method a Ni interlayer on the Si substrate can improve the quality of the c-BN thin films than directly on Si substrate. In the sputter method‚, the working gas was N2 and Ar‚, hot-pressed hexagonal boron nitride(h-BN) of 4N purity was used as sputtering target‚, the c-BN thin film with over 90% content of cubic phase was successively deposited on Si substrate. In our research‚, the boron nitride thin films were characterized by Fourier Transform Infrared(FTIR) Spectra and X-ray diffraction.Finally we concluded that for CVD method the cubic phase content and adhesion are highly affected by the crystal lattice mismatch between c-BN and substrate materials; however‚, for sputter method the crystal lattice mismatch between c-BN and substrate materials little affects the quality of c-BN thin films.
    [1]

    Z.Z.Song et al., ‚Physics,‚ 24(1995)‚, 307(in Chinese)[宋志忠、郭永平、张仿清、陈光华‚,物理‚,24(1995)‚,307].

    [2]

    M.Sokolowski‚, J.Cryst.Growth‚, 46(1979)‚, 136.

    [3]

    F.Zhang‚Y. Guo‚, Z.Song‚, G.Chen‚, Appl.Phys.Lett., 65(1994)‚, 971.

    [4]

    P.B. Mirkarimi‚, K.F. McCarty‚, G.F. Cardinale‚, D.L. Medlin‚, D.K. Ottesen‚, H.A.Johnsen‚, J.V ac.Sci.Technol., ‚A14(1996)‚ 251.

    [5]

    H.Luthjie‚, K.Bewilogua‚, S.Daaud et al., ‚Thin Solid Films‚, 257(1995)‚, 40.

    [6]

    M.Okamoto‚, Y.Utisumi‚, Y.Osaka‚Jpn., J.Appl.Phys., 29(1990)‚, L1004.

    [7]

    P.B. Mirkarimi‚, K.F. McCarty‚, D.L. Medlin‚, Mater.Sci.Engin., R21(1997)‚, 47.

    [8]

    T.A. Friedmann‚, P.B. Mirkarimi‚, D.L. Medlin‚, K.F. McCarty‚, E.J. Klaus‚, D. Boehme‚, H.A. Johnsen‚, M.J. Mills‚, D.K. Ottesen‚, J.Appl.Phys., 76(1994)‚, 3088.

    [9]

    P.B. Mirkarimi‚, K.F. McCary‚, D.L. Medlin‚, W.G. Wolf‚, T.A. Friedmann‚, E.J.Klaus‚, G.F.Cardinale‚, D.G.Howitt‚, J. Mater.Res., 9(1994),‚ 2925.

    [10]

    Z.Song,‚ F.Zhang‚, Y.Guo‚, G.Chen‚, Appl.Phys.Lett., 65(1994)‚, 2669.

    [11]

    G.H. Chen et al., ‚Chinese Science Bulletin‚, 40(1995)‚, 499(in Chinese)[陈光华、郭永平等‚,科学通报‚,40(1995)‚,499].

    [12]

    Jin-xiang Deng‚, Bo Wang‚, Li-wen Tan‚, Hui Yan‚, Guang-hua Chen‚, Thin Solid Films‚, 368(2000)‚, 317.

  • [1]

    Z.Z.Song et al., ‚Physics,‚ 24(1995)‚, 307(in Chinese)[宋志忠、郭永平、张仿清、陈光华‚,物理‚,24(1995)‚,307].

    [2]

    M.Sokolowski‚, J.Cryst.Growth‚, 46(1979)‚, 136.

    [3]

    F.Zhang‚Y. Guo‚, Z.Song‚, G.Chen‚, Appl.Phys.Lett., 65(1994)‚, 971.

    [4]

    P.B. Mirkarimi‚, K.F. McCarty‚, G.F. Cardinale‚, D.L. Medlin‚, D.K. Ottesen‚, H.A.Johnsen‚, J.V ac.Sci.Technol., ‚A14(1996)‚ 251.

    [5]

    H.Luthjie‚, K.Bewilogua‚, S.Daaud et al., ‚Thin Solid Films‚, 257(1995)‚, 40.

    [6]

    M.Okamoto‚, Y.Utisumi‚, Y.Osaka‚Jpn., J.Appl.Phys., 29(1990)‚, L1004.

    [7]

    P.B. Mirkarimi‚, K.F. McCarty‚, D.L. Medlin‚, Mater.Sci.Engin., R21(1997)‚, 47.

    [8]

    T.A. Friedmann‚, P.B. Mirkarimi‚, D.L. Medlin‚, K.F. McCarty‚, E.J. Klaus‚, D. Boehme‚, H.A. Johnsen‚, M.J. Mills‚, D.K. Ottesen‚, J.Appl.Phys., 76(1994)‚, 3088.

    [9]

    P.B. Mirkarimi‚, K.F. McCary‚, D.L. Medlin‚, W.G. Wolf‚, T.A. Friedmann‚, E.J.Klaus‚, G.F.Cardinale‚, D.G.Howitt‚, J. Mater.Res., 9(1994),‚ 2925.

    [10]

    Z.Song,‚ F.Zhang‚, Y.Guo‚, G.Chen‚, Appl.Phys.Lett., 65(1994)‚, 2669.

    [11]

    G.H. Chen et al., ‚Chinese Science Bulletin‚, 40(1995)‚, 499(in Chinese)[陈光华、郭永平等‚,科学通报‚,40(1995)‚,499].

    [12]

    Jin-xiang Deng‚, Bo Wang‚, Li-wen Tan‚, Hui Yan‚, Guang-hua Chen‚, Thin Solid Films‚, 368(2000)‚, 317.

  • [1] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [2] 肖美霞, 冷浩, 宋海洋, 王磊, 姚婷珍, 何成. 有机分子吸附和衬底调控锗烯的电子结构. 物理学报, 2021, 70(6): 063101. doi: 10.7498/aps.70.20201657
    [3] 肖佳勇, 谭兴毅, 杨贝贝, 任达华, 左安友, 傅华华. 氮化硼纳米带功能化碳纳米管的热自旋输运性质. 物理学报, 2019, 68(5): 057301. doi: 10.7498/aps.68.20181968
    [4] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [5] 张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华. 衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响. 物理学报, 2012, 61(23): 238101. doi: 10.7498/aps.61.238101
    [6] 杨杭生, 聂安民, 张健英. 立方氮化硼薄膜的最新研究进展. 物理学报, 2009, 58(2): 1364-1370. doi: 10.7498/aps.58.1364
    [7] 邓金祥, 汪旭洋, 姚 倩, 周 涛, 张晓康. 立方氮化硼薄膜的光学带隙. 物理学报, 2008, 57(10): 6631-6635. doi: 10.7498/aps.57.6631
    [8] 杨杭生, 谢英俊. 立方氮化硼薄膜生长过程中的界面控制. 物理学报, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [9] 陈 浩, 邓金祥, 刘钧锴, 周 涛, 张 岩, 陈光华. 立方氮化硼薄膜沉积过程的相变研究. 物理学报, 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [10] 卢 肖, 吴传贵, 张万里, 李言荣. 射频溅射制备的BST薄膜介电击穿研究. 物理学报, 2006, 55(5): 2513-2517. doi: 10.7498/aps.55.2513
    [11] 田 凌, 丁 毅, 陈 浩, 刘钧锴, 邓金祥, 贺德衍, 陈光华. 用射频溅射法制备立方氮化硼薄膜. 物理学报, 2006, 55(10): 5441-5443. doi: 10.7498/aps.55.5441
    [12] 王文静, 萧淑琴, 刘宜华, 陈卫平, 代由勇, 姜 山, 袁慧敏, 颜世申. 射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响. 物理学报, 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [13] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜. 物理学报, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [14] 郑代顺, 谢天, 白建民, 魏福林, 杨正. 射频溅射FeTaN纳米晶软磁薄膜结构和磁性. 物理学报, 2002, 51(4): 908-912. doi: 10.7498/aps.51.908
    [15] 田晶泽, 吕反修, 夏立芳. 脉冲直流偏压增强的高质量立方氮化硼薄膜的合成. 物理学报, 2001, 50(11): 2258-2262. doi: 10.7498/aps.50.2258
    [16] 马锡英, 岳金顺, 贺德衍, 陈光华. 立方氮化硼薄膜的生长特性与粘附性研究. 物理学报, 1998, 47(5): 871-875. doi: 10.7498/aps.47.871
    [17] 张德恒, D.E.Brode. 用射频溅射方法制备的多晶ZnO薄膜的光响应与其结构变化. 物理学报, 1995, 44(8): 1321-1327. doi: 10.7498/aps.44.1321
    [18] 吕宏强, 王杰, 沈军, 刘咏, 王迅, 王昌平, 王建宝, 李晨, 沈孝良. 衬底温度对热壁外延ZnSe薄膜质量的影响. 物理学报, 1992, 41(8): 1308-1314. doi: 10.7498/aps.41.1308
    [19] 施一生, 赵特秀, 刘洪图, 王晓平. 射频溅射Pd薄膜的电阻率研究. 物理学报, 1990, 39(11): 1803-1810. doi: 10.7498/aps.39.1803
    [20] 立方氮化硼协作组. 高温高压下立方氮化硼的合成. 物理学报, 1976, 25(1): 1-9. doi: 10.7498/aps.25.1
计量
  • 文章访问数:  1356
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2000-06-15
  • 修回日期:  2000-07-28

/

返回文章
返回