搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

h-BN/diamond异质结的制备与沟道载流子输运性质

贾燕伟 何健 何萌 朱肖华 赵上熳 刘金龙 陈良贤 魏俊俊 李成明

引用本文:
Citation:

h-BN/diamond异质结的制备与沟道载流子输运性质

贾燕伟, 何健, 何萌, 朱肖华, 赵上熳, 刘金龙, 陈良贤, 魏俊俊, 李成明

Synthesis of h-BN/diamond heterojunctions and its electrical characteristics

Jia Yan-Wei, He Jian, He Meng, Zhu Xiao-Hua, Zhao Shang-Man, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming
PDF
HTML
导出引用
  • 基于h-BN钝化的氢终端金刚石表面导电沟道表现出高的空穴迁移率, 但是当前h-BN钝化金刚石主要采用机械剥离的方法, 无法实现大尺寸导电沟道, 难以满足实际的应用要求. 本文系统地开展了经典转移h-BN对氢终端金刚石表面导电沟道的载流子输运影响研究. 通过微波化学气相沉积外延生长高质量单晶金刚石, 并通过表面氢化处理得到氢终端金刚石. 通过湿法转移不同层数h-BN制备出h-BN/H-diamond异质结, 系统地研究了沟道载流子输运特征. 研究结果表明, h-BN转移后沟道导电性能明显增强, 且随着h-BN厚度的增加, 沟道导电性增强效果趋于稳定. 多层h-BN的转移可使氢终端金刚石表面载流子密度提升近2倍, 方阻降低到之前的50%. 当前的结果显示h-BN/H-diamond异质结可能存在转移掺杂效果, 使得载流子密度显著提升. 伴随载流子密度的增加, h-BN钝化的金刚石表面沟道迁移率保持稳定, h-BN在金刚石表面吸附, 使得原本在氢终端表面的负电荷向h-BN表面移动, 作用距离加大, 减弱了氢终端金刚石导电沟道中空穴和介质层负电荷的耦合作用, 使其迁移率保持稳定.
    Conductive channel on the surface of hydrogen terminated diamond with two-dimensional h-BN passivation exhibits high hole mobility. However, the current h-BN passivated diamond mainly uses the method of mechanical peeling, which cannot achieve a large-size conductive channel and is difficult to meet the actual application requirements. In this study, the effect of classical transfer h-BN on the conductive channel on the surface of hydrogen terminated diamond is studied. High-quality single crystal diamond is epitaxially grown by microwave chemical vapor deposition (MPCVD) and the hydrogen terminated diamond is obtained by surface hydrogenation treatment. H-BN/H-diamond heterojunctions with different layers of h-BN are prepared by wetting transfer, and the characteristics of channel carrier transport are systematically studied. The results show that the channel conductivity is significantly enhanced after h-BN transfer, and with the increase of h-BN thickness, the enhancement effect of channel conductivity tends to be stable. The transfer of multilayer h-BN can increase the carrier density on the surface of hydrogen terminated diamond by nearly 2 times, and the square resistance is reduced to 50%. The current results show that the h-BN/H-diamond heterojunction may have a transfer doping effect, resulting in a significant increase in carrier density. With the increase of the channel carrier density, the channel mobility on the surface of the h-BN passivated diamond remains stable. The H-BN absorbs on the surface of the diamond, so that the negative charge originally on the surface of the hydrogen termination moves to the surface of h-BN, and the distance of action increases, weakening the coupling of the negative charge of the hole with the negative charge of the dielectric layer in the conductive channel of the hydrogen terminated diamond, which makes the mobility stable.
      通信作者: 刘金龙, liujinlong@ustb.edu.cn ; 李成明, chengmli@mater.ustb.edu.cn
    • 基金项目: 国家磁约束核聚变发展研究专项资助(批准号: 2019YFE03100200)、北京自然科学基金(批准号: 4192038)和核探测与核电子学国家重点实验室项目(SKLPDE-KF-202202).
      Corresponding author: Liu Jin-Long, liujinlong@ustb.edu.cn ; Li Cheng-Ming, chengmli@mater.ustb.edu.cn
    • Funds: Project supported by the National MCF Energy R & D Program, Cnina(Grant No. 2019YFE03100200), the Natural Science Foundation of Beijing, China (Grant No. 4192038), and the Nuclear Science Foundation of National Key Laboratory of Nuclear Detection and Nuclear Electronics of China (Grant No. SKLPDE-KF-202202).
    [1]

    Stenger I, Pinault Thaury M A, Kociniewski T, Lusson A, Chikoidze E, Jomard F, Dumont Y, Chevallier J, Barjon J 2013 J. Appl. Phys. 114 073711Google Scholar

    [2]

    李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修 2022 人工晶体学报 51 759Google Scholar

    Li C M, Ren F T, Shao S W, Mou L X, Zhang Q R, He J, Zheng Y T, Liu J L, Wei J J, Chen L X, Lü F X 2022 J. Synth. Cryst. 51 759Google Scholar

    [3]

    姜荣超, 雷雨, 李超群, 刘谷成, 周晓丹 2008 金刚石与磨料磨具工程 20 42Google Scholar

    Jiang R C, Li C Q, Liu G C, Zhou X D 2008 Diamond Abras. Eng. 20 42Google Scholar

    [4]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [5]

    Geis M W, Fedynyshyn T H, Plaut M E, Wade T C, Wuorio C H, Vitale S A, Varghese J O, Grotjohn T A, Nemanich R J, Hollis M A 2018 Diamond Relat. Mater. 84 86Google Scholar

    [6]

    Saha N C, Takahashi K, Imamura M, Kasu M 2020 J. Appl. Phys. 128 135702Google Scholar

    [7]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [8]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 223711Google Scholar

    [9]

    Geis M W, Varghese J O, Hollis M A, Nemanich R J, Zhang X, Turner G W, Warnock S M, Vitale S A, Osadchy T, Zhang B 2020 Diamond Relat. Mater. 106 107819Google Scholar

    [10]

    Russell S A O, Cao L, Qi D, Tallaire A, Crawford K G, Wee A T S, Moran D A 2013 Appl. Phys. Lett. 103 202112Google Scholar

    [11]

    Tordjman M, Saguy C, Bolker A, Kalish R 2014 Adv. Mater. 1 1300155Google Scholar

    [12]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marco Marinelli G, Verona R 2016 J. Appl. Phys. 120 025104Google Scholar

    [13]

    Tordjman M, Weinfeld K, Kalish R 2017 Appl. Phys. Lett. 111 111601Google Scholar

    [14]

    Kevin G, Crawford, Liang C, Dongchen Q, Alexandre T, Limiti E, Verona C, Andrew T S W, David A J M 2016 Appl. Phys. Lett. 108 042103Google Scholar

    [15]

    Hussain J, Abbasi H N, Wang W, Wang Y F, Wang H X 2020 AIP Adv. 10 035327Google Scholar

    [16]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [17]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Quan R, Yang J, Lin Z, Hao Y 2017 AIP Adv. 7 125302Google Scholar

    [18]

    Imura, M, Banal R G, Liao M, Liu J, Aizawa T, Tanaka A 2017 J. Appl. Phys. 121 025702Google Scholar

    [19]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J 2018 J. Mater. Sci. 53 13030Google Scholar

    [20]

    Liu J L, Yu H, Shao S W, Tu J P, Zhu X H, Yuan X L, Wei J J, Chen L X, Ye H T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

    [21]

    Sasama Y, Komatsu K, Moriyama S, Imura M, Takahide Y 2018 APL Mater. 6 111105Google Scholar

    [22]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nat. Eletronics 5 37

    [23]

    Su J, Li Y, Li X, Yao P, Tang W 2014 Diamond Relat. Mater. 42 28Google Scholar

    [24]

    安康, 刘金龙, 林亮珍, 张博弈, 赵云, 郭彦召, Tomasz O, 陈良贤, 魏俊俊, 李成明 2018 表面技术 47 11

    An K, Liu J L, Lin L Z, Zhang B Y, Zhao Y, Guo Y Z, Tomasz O, Chen L X, Wei J J, Li C M 2018 Surf. Technol. 47 11

    [25]

    Lindblom J 2005 Am. Mineral 90 428Google Scholar

    [26]

    Crawford, Kevin G, Tallaire, Alexandre X, Macdonald, David A, Dongchen M, David A J 2018 Diamond Relat. Mater. 84 48Google Scholar

    [27]

    Geis M W, Varghese J O, Vardi A, Kedzierski J, Zhang B 2021 Diamond Relat. Mater. 118 108518Google Scholar

    [28]

    Tang S, Liu H, Tian Y, Chen D, Zhou J 2021 Spectrochim. Acta, Part A 262 120092Google Scholar

    [29]

    Xing K, Xiang Y, Jiang, M, Creedon, D L, Qi D C 2020 Appl. Surf. Sci. 509 144890Google Scholar

    [30]

    Verona C, Arciprete F, Foffi M, Limiti E, Marinelli M, Placidi E 2018 Appl. Phys. Lett. 112 180602Google Scholar

    [31]

    Ogawa S, Yamada T, Kadowaki R, Taniguchi T, Abukawa T, Takakuwa Y 2019 J. Appl. Phys. 125 144303Google Scholar

    [32]

    Mirabedini P S, Debnath B, Neupane M R, Greaney P A, Ivanov T G 2020 Appl. Phys. Lett. 117 121901Google Scholar

    [33]

    Gorbachev R V, Riaz I, Nair R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465Google Scholar

    [34]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Verona R G 2016 J. Appl. Phy. 120 025104

    [35]

    Li Y, Zhang J, Liu G, Ren Z, Zhang J, Hao Y 2018 Phys. Status Solidi RRL. 12 1700401Google Scholar

  • 图 1  (a) 生长前衬底拉曼光谱图; (b) 生长后外延层拉曼光谱图; (c) 生长前衬底摇摆曲线; (d) 生长后外延层摇摆曲线; (e) 生长前衬底PL光谱; (f) 生长后外延层PL光谱

    Fig. 1.  (a) Raman spectra of the substrate before growth; (b) raman spectra of the epitaxial layer after growth; (c) rocking curve of pre-growth substrate; (d) rocking curve of postgrowth epitaxial layer; (e) PL spectra of pre-growth substrate; (f) PL spectra of postgrowth epitaxial layer.

    图 2  (a) 表面氢化处理前金刚石精密抛光表面形貌; (b) 金刚石氢化处理后表面形貌

    Fig. 2.  (a) Surface morphology of precision-polishing diamond before surface hydrogenation; (b) surface morphology of diamond after hydrogenation treatment.

    图 3  氢终端金刚石导电性能随时间的变化 (a)方阻随时间的变化; (b)载流子密度随时间变化; (c)迁移率随时间变化

    Fig. 3.  The conductivity of hydrogen terminated diamond changes over time: (a) The change of the square resistance over time; (b) carrier concentration over time; (c) mobility over time.

    图 4  (a) h-BN/Si拉曼图谱; (b) 转移前后氢终端表面的XPS

    Fig. 4.  (a) Raman spectra of h-BN/Si; (b) XPS of the hydrogen terminated surface before and after h-BN transfer.

    图 5  不同厚度的h-BN转移后氢终端金刚石电学性能

    Fig. 5.  Electrical properties of hydrogen terminated diamond after different-thickness h-BN transfer.

    图 6  氢终端金刚石以及不同固体介质材料的电子亲和势

    Fig. 6.  Schematic diagram of hydrogen terminated diamond and metal oxide.

    图 7  (a) h-BN/H-diamond的界面结构; (b) diamond晶体结构; (c) h-BN/H-diamond异质结示意图

    Fig. 7.  (a) Interface structure of h-BN/H-diamond; (b) diamond crystal structure; (c) schematic diagram of h-BN/H-diamond heterojunction.

    表 1  生长、氢化预处理、表面氢化工艺参数

    Table 1.  Growth, cleaning, and hydrogenation parameters.

    工艺参数温度/℃功率/W腔压/kPa甲烷流量/%氧气流量/%
    生长800—8503800—390017—2050.3
    氢化预处理8001500—200010—12
    表面氢化700—7501400—16003—5
    下载: 导出CSV

    表 2  多层h-BN转移前后(100)氢终端金刚石的电学性能(YW-0为PMMA空白对照试验; YW-1, YW-2, YW-3为多层h-BN转移前后的结果)

    Table 2.  Electrical properties of hydrogen terminated diamond before and after multilayer h-BN transfer (YW-0 is a PMMA blank control test; YW-1, YW-2, YW-3 are multilayer Results before and after h-BN transfer).

    编号方阻
    /(103 Ω·□–1)
    迁移率
    /(cm2·V–1·s–1)
    载流子密度
    /(1012 cm–2)
    YW-0转移前10.8203.92.84
    转移后10.6198.52.96
    YW-1转移前12.0246.62.11
    转移后5.98248.44.20
    YW-2转移前10.1246.02.50
    转移后5.48195.65.83
    YW-3转移前10.2161.93.75
    转移后4.88145.18.81
    下载: 导出CSV
  • [1]

    Stenger I, Pinault Thaury M A, Kociniewski T, Lusson A, Chikoidze E, Jomard F, Dumont Y, Chevallier J, Barjon J 2013 J. Appl. Phys. 114 073711Google Scholar

    [2]

    李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修 2022 人工晶体学报 51 759Google Scholar

    Li C M, Ren F T, Shao S W, Mou L X, Zhang Q R, He J, Zheng Y T, Liu J L, Wei J J, Chen L X, Lü F X 2022 J. Synth. Cryst. 51 759Google Scholar

    [3]

    姜荣超, 雷雨, 李超群, 刘谷成, 周晓丹 2008 金刚石与磨料磨具工程 20 42Google Scholar

    Jiang R C, Li C Q, Liu G C, Zhou X D 2008 Diamond Abras. Eng. 20 42Google Scholar

    [4]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [5]

    Geis M W, Fedynyshyn T H, Plaut M E, Wade T C, Wuorio C H, Vitale S A, Varghese J O, Grotjohn T A, Nemanich R J, Hollis M A 2018 Diamond Relat. Mater. 84 86Google Scholar

    [6]

    Saha N C, Takahashi K, Imamura M, Kasu M 2020 J. Appl. Phys. 128 135702Google Scholar

    [7]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [8]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 223711Google Scholar

    [9]

    Geis M W, Varghese J O, Hollis M A, Nemanich R J, Zhang X, Turner G W, Warnock S M, Vitale S A, Osadchy T, Zhang B 2020 Diamond Relat. Mater. 106 107819Google Scholar

    [10]

    Russell S A O, Cao L, Qi D, Tallaire A, Crawford K G, Wee A T S, Moran D A 2013 Appl. Phys. Lett. 103 202112Google Scholar

    [11]

    Tordjman M, Saguy C, Bolker A, Kalish R 2014 Adv. Mater. 1 1300155Google Scholar

    [12]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marco Marinelli G, Verona R 2016 J. Appl. Phys. 120 025104Google Scholar

    [13]

    Tordjman M, Weinfeld K, Kalish R 2017 Appl. Phys. Lett. 111 111601Google Scholar

    [14]

    Kevin G, Crawford, Liang C, Dongchen Q, Alexandre T, Limiti E, Verona C, Andrew T S W, David A J M 2016 Appl. Phys. Lett. 108 042103Google Scholar

    [15]

    Hussain J, Abbasi H N, Wang W, Wang Y F, Wang H X 2020 AIP Adv. 10 035327Google Scholar

    [16]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [17]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Quan R, Yang J, Lin Z, Hao Y 2017 AIP Adv. 7 125302Google Scholar

    [18]

    Imura, M, Banal R G, Liao M, Liu J, Aizawa T, Tanaka A 2017 J. Appl. Phys. 121 025702Google Scholar

    [19]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J 2018 J. Mater. Sci. 53 13030Google Scholar

    [20]

    Liu J L, Yu H, Shao S W, Tu J P, Zhu X H, Yuan X L, Wei J J, Chen L X, Ye H T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

    [21]

    Sasama Y, Komatsu K, Moriyama S, Imura M, Takahide Y 2018 APL Mater. 6 111105Google Scholar

    [22]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nat. Eletronics 5 37

    [23]

    Su J, Li Y, Li X, Yao P, Tang W 2014 Diamond Relat. Mater. 42 28Google Scholar

    [24]

    安康, 刘金龙, 林亮珍, 张博弈, 赵云, 郭彦召, Tomasz O, 陈良贤, 魏俊俊, 李成明 2018 表面技术 47 11

    An K, Liu J L, Lin L Z, Zhang B Y, Zhao Y, Guo Y Z, Tomasz O, Chen L X, Wei J J, Li C M 2018 Surf. Technol. 47 11

    [25]

    Lindblom J 2005 Am. Mineral 90 428Google Scholar

    [26]

    Crawford, Kevin G, Tallaire, Alexandre X, Macdonald, David A, Dongchen M, David A J 2018 Diamond Relat. Mater. 84 48Google Scholar

    [27]

    Geis M W, Varghese J O, Vardi A, Kedzierski J, Zhang B 2021 Diamond Relat. Mater. 118 108518Google Scholar

    [28]

    Tang S, Liu H, Tian Y, Chen D, Zhou J 2021 Spectrochim. Acta, Part A 262 120092Google Scholar

    [29]

    Xing K, Xiang Y, Jiang, M, Creedon, D L, Qi D C 2020 Appl. Surf. Sci. 509 144890Google Scholar

    [30]

    Verona C, Arciprete F, Foffi M, Limiti E, Marinelli M, Placidi E 2018 Appl. Phys. Lett. 112 180602Google Scholar

    [31]

    Ogawa S, Yamada T, Kadowaki R, Taniguchi T, Abukawa T, Takakuwa Y 2019 J. Appl. Phys. 125 144303Google Scholar

    [32]

    Mirabedini P S, Debnath B, Neupane M R, Greaney P A, Ivanov T G 2020 Appl. Phys. Lett. 117 121901Google Scholar

    [33]

    Gorbachev R V, Riaz I, Nair R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465Google Scholar

    [34]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Verona R G 2016 J. Appl. Phy. 120 025104

    [35]

    Li Y, Zhang J, Liu G, Ren Z, Zhang J, Hao Y 2018 Phys. Status Solidi RRL. 12 1700401Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构. 物理学报, 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [3] 丁俊, 文黎巍, 李瑞雪, 张英. 铁电极化翻转对硅烯异质结中电子性质的调控. 物理学报, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [4] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [5] 孙志海, 黄强, 张颖, 黄鹏儒, 植慧茵, 邹勇进, 徐芬, 孙立贤. 六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算. 物理学报, 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [6] 姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明. 六方氮化硼层间气泡制备与压强研究. 物理学报, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [7] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [8] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [9] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率. 物理学报, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [10] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [11] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [12] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [13] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [14] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [15] 张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西. ZnO/Si异质结的光电转换特性研究. 物理学报, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] 伍楷舜, 龙兴腾, 董建文, 陈弟虎, 汪河洲. 光子晶体异质结的位相和应用. 物理学报, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] 刘江涛, 周云松, 王福合, 顾本源. 不同晶格光子晶体异质结的界面传导模. 物理学报, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] 李国辉, 周世平, 徐得名. GaAs/AlGaAs异质结动力学行为研究. 物理学报, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
计量
  • 文章访问数:  4972
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-07-11
  • 上网日期:  2022-11-04
  • 刊出日期:  2022-11-20

/

返回文章
返回