搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用

韩梅斗雪 王雅 王荣波 赵均陶 任慧志 侯国付 赵颖 张晓丹 丁毅

引用本文:
Citation:

锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用

韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅

Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells

Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi
PDF
HTML
导出引用
  • 高效钙钛矿太阳电池中通常采用有机p型半导体材料作为空穴传输层. 有机材料在湿度、温度、紫外照射等环境因素下会出现严重的性能衰退, 加速钙钛矿太阳电池的老化, 成为实现其实际应用的主要障碍之一. 本文提出采用无机硫氢酸亚铜(CuSCN)作为空穴传输材料, 并通过锂掺杂提高其空穴传输特性; 在此基础上采用聚[双(4苯基)(2,4,6-三甲基苯基)胺]修饰CuSCN表面, 避免CuSCN和碘化铅(PbI2)间的相互作用, 实现了大晶粒、致密钙钛矿薄膜的制备, 最终实现了钙钛矿太阳电池性能的有效提升. 本工作为稳定、高效钙钛矿太阳电池的制备提供了可借鉴的策略.
    Perovskite solar cells have attracted extensive attention because of their photoelectric characteristics. Since 2009, the photoelectric conversion rate of the solar cells has soared from 3.8% to 25.7%. Perovskite material has become a focus of extensive academic research due to its advantages of high carrier mobility, low exciton binding energy, wide absorption spectrum and high optical absorption coefficient. However, organic P-type semiconductor material is usually used as a hole transport layer in high efficiency perovskite solar cells, for example, Spiro-OMeTAD, PEDOT:PSS, and PTAA. Because Spiro-OMeTAD is difficult to purify, many hole transport materials containing triphenylamine like Spiro-OMeTAD have been synthesized, such as triphenylamine polymer PTAA. As the conjugate parts of these triphenylamine transport materials are not coplanar and the space is distorted, they cannot form ordered stacks by spin-coating method, so their charge properties are weak, and li-TFSI and tBP are often added to improve the hole transport, so as to achieve better device effects. Moreover, the PTAA has the problem of infiltration, and it is difficult to form a completely covered perovskite film on it, which seriously affects the quality and surface morphology of perovskite film. The PEDOT:PSS itself has an acidic and corrosive electrode, and is easy to absorb moisture, which will affect the stability of the solar cell. The performance of organic material will deteriorate seriously under environmental factors such as humidity, temperature and UV irradiation, which will accelerate the aging of perovskite solar cells and become one of the main obstacles to their practical applications. In this work, the inorganic cuprous thiocyanate (CuSCN) is used as a hole transport material, the CuSCN is a rich and stable P-type semiconductor material, which has the characteristics of abundance, low cost, high carrier mobility, appropriate energy level, low defect density, good thermal stability, and excellent light transmittance. The CuSCN is one of the few known compounds with both high optical transparency (its wide band gap is 3.7–3.9 eV) and significant P-type electrical conductivity. Most importantly, CuSCN is inexpensive and can be prepared by solution method at room temperature. And its hole transport properties are improved by lithium doping. On this basis, the surface of CuSCN is modified with PTAA to avoid the interaction between CuSCN and lead iodide (PbI2), and the large-grained and dense perovskite films are prepared. Finally, the performance of perovskite solar cells is effectively improved. This work provides a reference for the preparation of the stable and efficient perovskite solar cells.
      通信作者: 丁毅, yiding@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874061, 61674084)、国家重点研发计划(批准号: 2018YFB1500103)和高等学校学科创新引智计划(111计划)(批准号: B16027)资助的课题.
      Corresponding author: Ding Yi, yiding@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874061, 61674084), the National Key R&D Program of China (Grant No. 2018YFB1500103), and the Innovation and Talent Introduction Plan in Colleges and Universities (111 Plan), China (Grant No. B16027).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Zhang J, Zhang T, Jiang L, Bach U, Cheng Y B 2018 ACS Energy Lett. 3 1677Google Scholar

    [4]

    Petrus M L, Bein T, Dingemans T J, Docampo P 2015 J. Mater. Chem. A. 3 12159Google Scholar

    [5]

    Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Met. 126 311Google Scholar

    [6]

    Li W, Liu C, Li Y, Kong W, Wang X, Chen H, Xu B, Cheng C 2018 Sol. RRL. 2 1800173Google Scholar

    [7]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [8]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar

    [9]

    Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934Google Scholar

    [10]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [11]

    Zaumseil J, Sirringhaus H 2007 Chem. Rev. 107 1296Google Scholar

    [12]

    Zhang C, Chen P, Hu W 2016 Small 12 1252Google Scholar

    [13]

    Guo N, Li J, Yang S, Zhang J, Ni J, Cai H 2021 Nanotechnology 32 395704Google Scholar

    [14]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [15]

    Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, Chen Y 2019 Adv. Energy Mater. 9 1900198Google Scholar

    [16]

    Luo J, Xia J, Yang H, Malik H A, Han F, Shu H, Yao X, Wan Z, Jia C 2020 Nano Energy 70 104509Google Scholar

    [17]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [18]

    Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Interfaces 5 1800260Google Scholar

    [19]

    Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J, Koster L J A 2017 Adv. Energy Mater. 7 1602432Google Scholar

    [20]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [21]

    Hou F, Shi B, Li T, Xin C, Ding Y, Wei C, Wang G, Li Y, Zhao Y, Zhang X 2019 ACS Appl. Mater. Interfaces 11 25218Google Scholar

    [22]

    Wang P, Li R, Chen B, Hou F, Zhang J, Zhao Y, Zhang X 2020 Adv. Mater. 32 1905766Google Scholar

  • 图 1  不掺杂和CuSCN中掺杂不同体积比LiSCN所得薄膜的(a) UV-Vis-NIR透过光谱; (b) 根据UV-Vis光谱得到的Tauc曲线; (c) Urbach能计算结果

    Fig. 1.  (a) UV-Vis-NIR transmission spectra of undoped and LiSCN doped CuSCN films with different volume ratios; (b) Tauc curves based on UV-Vis spectra; (c) calculated Urbach energy.

    图 2  掺锂前后CuSCN TFT器件Vg-Id转移曲线图以及基于CuSCN的典型底部栅极、顶部接触TFT结构示意图( Vds是漏极-源极电压, L是TFT器件的长度, W是TFT器件的宽度)

    Fig. 2.  Vg-Id transfer curves of TFT devices of CuSCN film before and after lithium doping and schematic diagram of typical bottom-gate and top-contact TFT based on CuSCN

    图 3  不掺杂和CuSCN中掺杂不同体积比LiSCN所得薄膜上的钙钛矿薄膜 (a)稳态PL光谱; (b) TRPL光谱

    Fig. 3.  (a) Steady state PL spectra and (b) TRPL spectra of perovskite films on CuSCN with different LiSCN doping ratio.

    图 4  (a)无修饰和(b) PTAA修饰后CuSCN薄膜上的钙钛矿薄膜表面SEM图; (c)无修饰和PTAA修饰后CuSCN薄膜上的钙钛矿薄膜XRD图

    Fig. 4.  (a), (b) SEM images of perovskite film surface on CuSCN film (a) without modification and (b) with PTAA modification; (c) XRD patterns of perovskite films on CuSCN films without modification and after PTAA modification.

    图 5  引入了PTAA表面修饰层的器件的(a)结构图和(b)能带结构图

    Fig. 5.  (a) Structure diagram and (b) band structure diagram of the device with PTAA modification.

    图 6  典型器件的(a)正反扫J-V曲线(Jsc为短路电流密度, Voc为开路电压, FF为填充因子, PCE为光电转换效率)、(b) EQE光谱图以及积分电流曲线

    Fig. 6.  Typical (a) J-V curves, (b) corresponding EQE spectrum and integrated current of solar cells.

    图 7  无修饰和有PTAA修饰层的器件性能 (a)暗态J-V曲线; (b)基于ITO/CuSCN/Perovskite/Spiro-OMeTAD /Au的单空穴结构SCLC曲线(VTFL为陷阱填充极限电压); (c) Mott-Schottky曲线

    Fig. 7.  Typical (a) dark state J-V curves, (b) SCLC curves, and (c) Mott-Schottky curves of device with and without PTAA modification.

    表 1  掺锂前后CuSCN薄膜的μFEVth (Vd是漏电压)

    Table 1.  μFE and Vth of CuSCN films doped with or without Li.

    Vd/VμFE/(cm2·(V·s)–1)Vth/V
    Control+10.031–4.93
    0.1%LiSCN+CuSCN+10.88–1.72
    0.5%LiSCN+CuSCN+11.134.35
    1%LiSCN+CuSCN+12.28–0.71
    下载: 导出CSV

    表 2  不掺杂和CuSCN中掺杂不同体积比LiSCN所得薄膜上的钙钛矿薄膜的TRPL拟合结果

    Table 2.  TRPL fitting results of perovskite films fabricated on CuSCN with different LiSCN doping ratio.


    τ1/ns

    A1/(A1+A2)/%

    τ2/ns

    A2/(A1+A2)/%

    τave/ns
    Control20.020.80295.8899.20293.67
    0.1%LiSCN+CuSCN16.441.58179.7498.42177.16
    0.5%LiSCN+CuSCN21.982.29159.2997.71156.15
    1%LiSCN+CuSCN19.212.29170.8797.71167.51
    下载: 导出CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [3]

    Zhang J, Zhang T, Jiang L, Bach U, Cheng Y B 2018 ACS Energy Lett. 3 1677Google Scholar

    [4]

    Petrus M L, Bein T, Dingemans T J, Docampo P 2015 J. Mater. Chem. A. 3 12159Google Scholar

    [5]

    Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Met. 126 311Google Scholar

    [6]

    Li W, Liu C, Li Y, Kong W, Wang X, Chen H, Xu B, Cheng C 2018 Sol. RRL. 2 1800173Google Scholar

    [7]

    Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111Google Scholar

    [8]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768Google Scholar

    [9]

    Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934Google Scholar

    [10]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [11]

    Zaumseil J, Sirringhaus H 2007 Chem. Rev. 107 1296Google Scholar

    [12]

    Zhang C, Chen P, Hu W 2016 Small 12 1252Google Scholar

    [13]

    Guo N, Li J, Yang S, Zhang J, Ni J, Cai H 2021 Nanotechnology 32 395704Google Scholar

    [14]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542Google Scholar

    [15]

    Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, Chen Y 2019 Adv. Energy Mater. 9 1900198Google Scholar

    [16]

    Luo J, Xia J, Yang H, Malik H A, Han F, Shu H, Yao X, Wan Z, Jia C 2020 Nano Energy 70 104509Google Scholar

    [17]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [18]

    Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Interfaces 5 1800260Google Scholar

    [19]

    Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J, Koster L J A 2017 Adv. Energy Mater. 7 1602432Google Scholar

    [20]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206Google Scholar

    [21]

    Hou F, Shi B, Li T, Xin C, Ding Y, Wei C, Wang G, Li Y, Zhao Y, Zhang X 2019 ACS Appl. Mater. Interfaces 11 25218Google Scholar

    [22]

    Wang P, Li R, Chen B, Hou F, Zhang J, Zhao Y, Zhang X 2020 Adv. Mater. 32 1905766Google Scholar

  • [1] 商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉. 基于埋底界面修饰策略制备正式钙钛矿太阳电池的研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241549
    [2] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [3] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [7] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [10] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [11] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展. 物理学报, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [12] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [15] 李海涛, 江亚晓, 涂丽敏, 李少华, 潘玲, 李文标, 杨仕娥, 陈永生. 退火温度对电子束蒸发沉积Cu2O薄膜性能的影响. 物理学报, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [16] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [17] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [18] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [19] 王 宇, 华玉林, 吴晓明, 张国辉, 惠娟利, 张丽娟, 刘 倩, 印寿根. 发光层和空穴传输层对白色电致发光器件性能的影响. 物理学报, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [20] 姜 燕, 杨盛谊, 张秀龙, 滕 枫, 徐 征, 侯延冰. 基于ZnSe的有机-无机异质结电致发光器件. 物理学报, 2006, 55(9): 4860-4864. doi: 10.7498/aps.55.4860
计量
  • 文章访问数:  4485
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 修回日期:  2022-07-07
  • 上网日期:  2022-10-24
  • 刊出日期:  2022-11-05

/

返回文章
返回