Loading [MathJax]/jax/output/HTML-CSS/jax.js

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气激光: 面向大气遥感的高分辨光谱技术

张海粟 乔玲玲 程亚

张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
引用本文: 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
Zhang Hai-Su, Qiao Ling-Ling, Cheng Ya. Air-lasing high-resolution spectroscopy for atmospheric remote sensing. Acta Phys. Sin., 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
Citation: Zhang Hai-Su, Qiao Ling-Ling, Cheng Ya. Air-lasing high-resolution spectroscopy for atmospheric remote sensing. Acta Phys. Sin., 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913

空气激光: 面向大气遥感的高分辨光谱技术

张海粟, 乔玲玲, 程亚

Air-lasing high-resolution spectroscopy for atmospheric remote sensing

Zhang Hai-Su, Qiao Ling-Ling, Cheng Ya
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 空气激光是以空气为增益介质产生的无谐振腔自由空间相干辐射, 具有高准直度、高相干性以及高强度等显著优势. 基于高功率超短激光脉冲非线性传输成丝过程, 可以远程诱导产生空气激光从而为大气遥感探测提供理想光源. 得益于空气激光产生时伴随的原子分子相干激发过程, 空气激光远程探测技术具有高光谱分辨率和高探测灵敏度, 为痕量分子探测、温室气体监测以及工业污染物检测等远程遥感应用提供了有力工具. 本文简单介绍空气激光的物理机制, 着重回顾空气激光远程探测的各种应用并对未来研究做出展望.
    Air-lasing is a cavityless coherent radiation generated in free space from air constituents as gain medium, featuring high collimation, high coherence, and high intensity. Benefited from the long-range filamentation of high-power ultrashort laser pulses propagating in air, the air-lasing can be induced remotely, providing an ideal light source for atmospheric remote sensing and chemical species-resolved detection. Owing to the coherent atomic/molecular excitation process accompanied with the generation of air laser, remote sensing based on air-lasing has high spectral resolution and high detection sensitivity, which recently proved to be a powerful tool for important applications such as in trace molecule detection, greenhouse gas monitoring and industrial pollutant detection. In this short review, the physical mechanism of air lasing is briefly introduced, and various applications of air laser remote sensing are reviewed emphatically, and the future research is prospected.
      PACS:
      34.80.Gs(Molecular excitation and ionization)
      42.50.Hz(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
      42.55.Lt(Gas lasers including excimer and metal-vapor lasers)
      42.65.Re(Ultrafast processes; optical pulse generation and pulse compression)
      通信作者: 程亚, ya.cheng@siom.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0705000)和国家自然科学基金(批准号: 12192251, 12134001) 资助的课题
      Corresponding author: Cheng Ya, ya.cheng@siom.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0705000) and the National Natural Science Foundation of China (Grant Nos. 12192251, 12134001).

    随着近年来温室效应加剧, 极端恶劣天气频发, 世界各国对大气层高精度动态监控需求也越发急迫. 作为大气远程遥感的有力工具, 激光光谱学手段被广泛应用[1]. 传统的激光遥感技术通常采用线性光学方案, 利用地基大能量激光系统向远程大气中发射高强度激光光束, 进而激发大气中污染物分子的特征能级辐射, 在地面观测站可以接收污染物分子引起的背向散射等非相干信号. 由于散射信号在全空间弥漫, 地基观测站所能收集的信号强度随传输距离增大表现为平方衰减规律, 从而严重限制了远程探测的信噪比和灵敏度. 近十多年来, 空气激光作为一个新颖的强场超快现象, 引起了国内外研究人员的广泛关注[2-6]. 空气激光是指以空气中存在的原子分子或其衍生物为增益介质, 通过无谐振腔单程放大的方式产生的具有高准直度、高相干性及高强度的自由空间辐射. 与自发荧光辐射相比, 空气激光沿特定方向传输, 具有良好的空间指向性和时空相干性, 并且其强度比荧光信号高若干数量级. 这些特征使其成为远程遥感技术的理想光源, 有望将远程遥感的灵敏度提高若干个数量级. 因此, 自空气激光现象发现以来, 人们便对其在远程探测中的应用进行了探索[7-10].

    Hemmer等[7]于2011年率先提出将背向空气激光与双光子吸收或受激拉曼散射技术结合进行远程分子指纹谱测量. 随后Malevich等[9,10]利用相向传输的台式化激光脉冲对这一方案进行了原理性验证, 间接证实了空气激光用于远程探测的可能性. 由于空气主要由氮气和氧气构成(氮气和氧气在空气中比例大于99%), 基于氮分子和氧分子及其电离解离产物包括氮分子离子、氮原子和氧原子产生空气激光是当前研究主流. 而氮分子离子(N+2)激光由于其独特的强场电离激发过程, 具有鲜明的量子相干性特征[11]: 强场电离的分子离子是彻底的相干体系, 电子相干性、振动相干性、转动相干性为研究弱光下的强非线性过程和分子的量子相干调控物理提供了新途径, 并为远程大气遥感提供原理性的发现推动力.

    此外, 峰值功率超过几吉瓦(1 GW = 109 W)的飞秒激光在大气中非线性传输时可以克服自然衍射, 产生一个内核直径在100 μm量级、峰值光强高达50—100 TW/cm2(1 TW = 1012 W)的自导引通道, 即飞秒激光成丝[12,13]. 目前, 普遍认为飞秒光丝是基于克尔自聚焦效应和等离子体散焦效应两者动态平衡而实现的突破衍射极限、不受聚焦系统数值孔径限制的超长距离光场约束. 飞秒激光成丝可以在远程大气中产生极小的聚焦光斑, 进而产生超高光强并激发大气中原子分子丰富的非线性效应. 结合空气激光和超快激光成丝, 为突破远程遥感中的探测灵敏度瓶颈提供了潜在的解决方案[14,15].

    2014年, Ni等[16]首次在高功率飞秒激光成丝产生N+2激光的过程中, 观测到了氮分子的转动拉曼信号并实现高达0.8%拉曼散射转换效率. 随后Liu等[17]发现了N+2激光的高阶级联拉曼散射, 并实现大于2000 cm–1的拉曼频移, 对应数十个拉曼级次和数百个拉曼边带, 开启了空气激光在非线性光谱领域的重要应用. 最近, Zhao等[18]利用飞秒激光成丝产生的超连续光谱和N+2激光成功测量了二氧化碳(CO2)和甲烷(CH4)气体的振动拉曼光谱, 而Zhang等[19]利用空气激光发展了一种高灵敏度的相干拉曼光谱技术, 实现了大气中温室气体浓度的定量检测、多组分同时探测和CO2同位素识别, 探测灵敏度达到0.03%的水平, 最小信号抖动达到2%的水平.

    本文回顾了近期基于空气激光的远程高分辨光谱探测研究. 首先简单介绍空气激光的种类和产生机制, 然后介绍空气激光在远程光谱探测中的研究进展, 并讨论这一新型探测手段的诸多独特优势, 最后对未来研究方向做出展望.

    按照增益介质的类型, 空气激光可以分为原子类、分子类、离子类三种. 原子类空气激光主要以空气中含量较多的氮气或氧气分子解离产生的氮、氧原子以及空气中含量甚微的稀有气体为增益介质[5,20,21]. 这类激光通常采用紫外光泵浦, 通过双子吸收实现激光跃迁能级的粒子数反转, 增益寿命较长. 分子类激光主要是以空气中的氮气分子为增益介质[4,22-24], 通过激发态氩原子或者热电子碰撞激发实现粒子数反转. 由于氧气的猝灭作用, 在空气中产生的氮分子激光信号通常较弱. 离子类空气激光主要以强场光电离产生的氮分子离子作为增益介质, 其物理机制颇受争议, 因此激起了强场科学领域研究者极大的兴趣[6,25-35]. 就远程遥感而言, 由于N+2激光产生时伴随的原子分子相干激发, 非常适用于具有高灵敏度和信噪比的相干光谱探测, 并得益于N+2激光独特的时空相干特性, 有望进一步提升基于相干拉曼光谱的大气遥感探测灵敏度和信噪比.

    图1给出了中心波长为428 nm的N+2激光典型时空特征[17]. 从图1(a)可以看到, N+2激光的光谱线宽极窄(约2 cm–1), 且具有良好的空间指向性. 与此同时, N+2激光具有独特的不对称时域波形(见图1(b)): 激光脉冲具有较为陡峭的上升沿和缓慢的下降沿, 脉冲半高全宽为12 ps, 接近傅里叶变换极限. 此外, N+2激光的产生滞后于高功率飞秒驱动光场. 这些特性使得基于N+2激光的相干拉曼光谱可以大大抑制非共振四波混频效应, 实现高相干性、高分辨率和高信噪比的远程光谱探测.

    图 1 $ {\rm{N}}_{2}^{+} $激光的时空特性[17] (a)中心波长为428 nm的$ {\rm{N}}_{2}^{+} $激光光谱, 插图为$ {\rm{N}}_{2}^{+} $激光的远场光斑形状; (b)$ {\rm{N}}_{2}^{+} $激光的时域波形, 红色箭头标明800 nm驱动激光脉冲入射时刻\r\nFig. 1. Spectral-temporal profiles of $ {\rm{N}}_{2}^{+} $ lasing[17]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum with the central wavelength of 428 nm, the inset is the far-field profile of $ {\rm{N}}_{2}^{+} $ laser; (b) $ {\rm{N}}_{2}^{+} $ laser temporal profile with the red arrow denoting the timing of the 800 nm driving pulse.
    图 1  N+2激光的时空特性[17] (a)中心波长为428 nm的N+2激光光谱, 插图为N+2激光的远场光斑形状; (b)N+2激光的时域波形, 红色箭头标明800 nm驱动激光脉冲入射时刻
    Fig. 1.  Spectral-temporal profiles of N+2 lasing[17]: (a) N+2 laser spectrum with the central wavelength of 428 nm, the inset is the far-field profile of N+2 laser; (b) N+2 laser temporal profile with the red arrow denoting the timing of the 800 nm driving pulse.

    Zhang等[36]于2013年展示了基于空气激光探测分子转动相干性的重要应用, 实验上发现N+2激光强度会随分子轴取向变化产生周期性调制, 并从N+2激光光谱解构分子转动量子波包演化. 2014年, Ni等[16]利用高功率中心波长为800 nm飞秒激光脉冲在纯氮气中驱动产生了N+2激光, 并首次在N+2激光光谱中观测到了中性氮分子的转动拉曼信号, 从激光到拉曼散射转换效率高达0.8%. 这一简单有效的方法推动了空气激光在大气遥感中的应用. 实验产生的N+2激光光谱和N2拉曼散射光谱如图2所示.

    图 2 $ {\rm{N}}_{2}^{+} $激光和$ {\rm{N}}_{2} $拉曼散射光谱[16] (a) $ {\rm{N}}_{2}^{+} $激光光谱; (b) $ {\rm{N}}_{2} $拉曼散射光谱\r\nFig. 2. Spectra of $ {\rm{N}}_{2}^{+} $ laser and $ {\rm{N}}_{2} $ Raman scattering[16]: (a) $ {\rm{N}}_{2}^{+} $ laser spectrum; (b) $ {\rm{N}}_{2} $ Raman scattering spectrum.
    图 2  N+2激光和N2拉曼散射光谱[16] (a) N+2激光光谱; (b) N2拉曼散射光谱
    Fig. 2.  Spectra of N+2 laser and N2 Raman scattering[16]: (a) N+2 laser spectrum; (b) N2 Raman scattering spectrum.

    随后Liu等[17]利用空气激光产生了高阶级联拉曼散射, 其实验原理包含N+2激光产生和相干拉曼散射两步, 基本实验光路如图3(a)所示. 首先将一束高功率近红外(800 nm)激光脉冲通过倍频晶体产生二倍频信号, 然后将基波和倍频波同时聚焦到充满氮气的气体盒子中, 用以产生高亮度中心波长为428 nm的N+2激光信号. 随后将N+2激光和剩余的泵浦光一起聚焦到拉曼散射气体中, 在飞秒泵浦光作用下分子多个转动能级发生非共振跃迁, 形成分子相干转动波包. N+2激光进而与分子相干转动波包作用, 产生高阶级联拉曼散射. 图3(b)是利用以上方案在不同气压CO2气体中产生的高阶转动拉曼散射光谱, 产生的拉曼频移大于2000 cm–1, 对应数十个拉曼级次和数百个拉曼边带. 由于这一方案采用单束飞秒激光脉冲, 所产生的空气激光与泵浦激光空间自然重合, 同时注入倍频光可以大大增强空气激光强度, 再结合空气激光本身的窄线宽和高相干度等独特优势, 开启了空气激光在非线性光谱领域的重要应用.

    图 3 利用$ {\rm{N}}_{2}^{+} $激光产生高阶拉曼散射[17] (a)实验装置示意图; (b) $ {\rm{N}}_{2}^{+} $激光在不同气压的CO2气体中产生的高阶转动拉曼散射光谱, 插图为1 atm (1 atm = 1.013×105 Pa)下的拉曼散射信号空间光斑形状\r\nFig. 3. High-order cascaded Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser[17]: (a) Experimental schematic; (b) measured high-order rotational Raman scattering spectra at various gas pressures of CO2, inset shows the spatial profile of Raman signals at 1 atm  (1 atm = 1.013×105 Pa).
    图 3  利用N+2激光产生高阶拉曼散射[17] (a)实验装置示意图; (b) N+2激光在不同气压的CO2气体中产生的高阶转动拉曼散射光谱, 插图为1 atm (1 atm = 1.013×105 Pa)下的拉曼散射信号空间光斑形状
    Fig. 3.  High-order cascaded Raman scattering induced by N+2 laser[17]: (a) Experimental schematic; (b) measured high-order rotational Raman scattering spectra at various gas pressures of CO2, inset shows the spatial profile of Raman signals at 1 atm (1 atm = 1.013×105 Pa).

    近期, Zhao等[18]将高功率飞秒激光聚焦在空气中成丝, 基于飞秒光丝非线性增强同时产生高强度N+2激光和谱宽超过多个分子振动能级跃迁的超连续谱白光. 通过将待测气体喷射到飞秒光丝附近, 在超连续谱白光和N+2激光的共同作用下, 实验中测量了多种分子包括N2, O2, CO2和CH4的振动拉曼散射光谱. 图4(a)给出CO2分子相干振动拉曼散射的能级跃迁结构, 超连续白光和激光分别对应振动能级激发光和探测光. 图4(b)展示了实验测得的超连续谱白光光谱和有无CO2时对应的拉曼散射光谱结构.

    图 4 $ {\rm{N}}_{2}^{+} $激光在CO2中产生拉曼散射[18] (a) CO2中对应的拉曼跃迁能级图; (b) N2, $ {\rm{N}}_{2}^{+} $, O2和 CO2的拉曼散射光谱\r\nFig. 4. Raman scattering induced by $ {\rm{N}}_{2}^{+} $ laser: (a) Relevant Raman transition levels in CO2; (b) Raman scattering spectra of N2, $ {\rm{N}}_{2}^{+} $, O2 and CO2.
    图 4  N+2激光在CO2中产生拉曼散射[18] (a) CO2中对应的拉曼跃迁能级图; (b) N2, N+2, O2和 CO2的拉曼散射光谱
    Fig. 4.  Raman scattering induced by N+2 laser: (a) Relevant Raman transition levels in CO2; (b) Raman scattering spectra of N2, N+2, O2 and CO2.

    近期, Zhang等[19]发展了空气激光辅助的相干拉曼光谱技术, 其基本原理如图5(a)所示. 飞秒激光与空气的极端非线性作用, 一方面激发空气分子的光学增益, 实现了1000倍以上的种子放大, 产生了波长为428 nm、线宽为13 cm–1N+2激光. 同时, 飞秒激光在大气中非线性传输产生超连续光谱, 将频谱带宽拓展到3800 cm–1, 比入射光谱宽1个数量级以上, 足以激发空气中大部分污染物分子和温室气体的相干拉曼振动. 当N+2激光遇到相干振动的分子, 会产生高效相干拉曼散射, 从拉曼散射光谱强度就可以反推环境气体中的各种分子成分及其浓度. 图5(b), (c)分别给出了实验测得的CO2分子和SF6分子相干拉曼散射强度随气体浓度的定量关系. 插图中分别给出了在最小浓度下两种分子的相干拉曼散射信号光谱, 可以看出其仍然具有较好的信噪比. 此外, 得益于空气激光内禀的窄光谱线宽, 空气激光辅助的相干拉曼光谱技术还可以很好地分辨CO2同位素分子.

    图 5 空气激光辅助相干拉曼散射[19] (a) 空气激光和相干拉曼散射产生机制示意图; (b), (c) 相干拉曼信号强度与气体浓度的定量关系, 插图为最小浓度下测得CO2和SF6的拉曼信号\r\nFig. 5. Air-lasing based coherent Raman scattering[19]: (a) Generation scheme of air-lasing and coherent Raman scattering; (b), (c) intensity of Raman signal as a function of gas pressure, inset shows the measured Raman signals of CO2 and SF6 at the minimum pressures.
    图 5  空气激光辅助相干拉曼散射[19] (a) 空气激光和相干拉曼散射产生机制示意图; (b), (c) 相干拉曼信号强度与气体浓度的定量关系, 插图为最小浓度下测得CO2和SF6的拉曼信号
    Fig. 5.  Air-lasing based coherent Raman scattering[19]: (a) Generation scheme of air-lasing and coherent Raman scattering; (b), (c) intensity of Raman signal as a function of gas pressure, inset shows the measured Raman signals of CO2 and SF6 at the minimum pressures.

    基于空气激光的远程光谱探测具有诸多独特优势. 首先, 相比如传统的线性光学方案, 空气激光远程探测是一个高度相干过程, 导致散射光具有较高强度和良好方向性, 极大地增强接收效率[37,38]. 其次, 相比于常见的非线性光谱学手段, 如四波混频, 受激拉曼散射, 双光子吸收等, 空气激光远程探测可以只用单束激光激发, 激发光和探测光在远程自动产生并且时空高度重合, 避免了多波长激光远程激发时难以精确控制的时空重合难题. 此外, 就N+2激光而言, 其产生过程中伴随的原子分子相干激发使得激光输出的时频信息带有鲜明的量子相干性特征, 比如超辐射类似的辐射延时[39], 非对称的时域波形[17,25], 近零色散的频谱分布[40]以及分子相干波包调制的激光强度[41,42]. 这些特征导致N+2激光在基于空气激光的相干光谱探测中发挥了不可替代的作用, 并为有望突破现有的远程光谱探测灵敏度和信噪比极限.

    处于强激光场中的原子或分子能够在远小于光周期的极短时间内, 以隧穿的方式被光场迅速电离, 这一现象为阿秒科学奠定了基础. 而空气激光现象的揭示, 尤其是N+2激光的发现表明强场光电离过程往往还伴随着分子离子或中性分子的激发, 导致自发甚至受激的光辐射. 这一意想不到的现象拓展了现有强场原子分子物理的研究范畴. 在强场超快条件下开展远程空气激光研究不仅对强场分子物理、超快非线性光学、量子光学等基础研究具有重要意义, 而且为光学遥感提供了一条全新的技术途径. 空气激光具有高准直度、高相干性和高强度等优点, 在大气痕量污染物遥感、爆炸物远程探测、核泄漏预警等环境科学和国防安全领域具有广阔的应用前景. 尽管现有的空气激光远程探测研究仍局限于高稳定性的实验室条件, 但相信随着相关基础研究的深入以及高功率飞秒激光脉冲技术的日臻完善, 大气层中的空气激光远程遥感探测在不久的将来会成为现实.

    感谢华东师范大学刘招祥博士提供相关素材.

    [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

    期刊类型引用(0)

    其他类型引用(2)

  • 图 1  N+2激光的时空特性[17] (a)中心波长为428 nm的N+2激光光谱, 插图为N+2激光的远场光斑形状; (b)N+2激光的时域波形, 红色箭头标明800 nm驱动激光脉冲入射时刻

    Fig. 1.  Spectral-temporal profiles of N+2 lasing[17]: (a) N+2 laser spectrum with the central wavelength of 428 nm, the inset is the far-field profile of N+2 laser; (b) N+2 laser temporal profile with the red arrow denoting the timing of the 800 nm driving pulse.

    图 2  N+2激光和N2拉曼散射光谱[16] (a) N+2激光光谱; (b) N2拉曼散射光谱

    Fig. 2.  Spectra of N+2 laser and N2 Raman scattering[16]: (a) N+2 laser spectrum; (b) N2 Raman scattering spectrum.

    图 3  利用N+2激光产生高阶拉曼散射[17] (a)实验装置示意图; (b) N+2激光在不同气压的CO2气体中产生的高阶转动拉曼散射光谱, 插图为1 atm (1 atm = 1.013×105 Pa)下的拉曼散射信号空间光斑形状

    Fig. 3.  High-order cascaded Raman scattering induced by N+2 laser[17]: (a) Experimental schematic; (b) measured high-order rotational Raman scattering spectra at various gas pressures of CO2, inset shows the spatial profile of Raman signals at 1 atm (1 atm = 1.013×105 Pa).

    图 4  N+2激光在CO2中产生拉曼散射[18] (a) CO2中对应的拉曼跃迁能级图; (b) N2, N+2, O2和 CO2的拉曼散射光谱

    Fig. 4.  Raman scattering induced by N+2 laser: (a) Relevant Raman transition levels in CO2; (b) Raman scattering spectra of N2, N+2, O2 and CO2.

    图 5  空气激光辅助相干拉曼散射[19] (a) 空气激光和相干拉曼散射产生机制示意图; (b), (c) 相干拉曼信号强度与气体浓度的定量关系, 插图为最小浓度下测得CO2和SF6的拉曼信号

    Fig. 5.  Air-lasing based coherent Raman scattering[19]: (a) Generation scheme of air-lasing and coherent Raman scattering; (b), (c) intensity of Raman signal as a function of gas pressure, inset shows the measured Raman signals of CO2 and SF6 at the minimum pressures.

  • [1]

    姚金平, 程亚 2020 中国激光 47 0500005Google Scholar

    Yao J, Cheng Y 2020 Chin. J. Laser 47 0500005Google Scholar

    [2]

    Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013 Chin. Opt. Lett. 11 013201Google Scholar

    [3]

    Polynkin P, Cheng Y 2018 Air Lasing (Cham: Springer International Publishing) p139

    [4]

    Luo Q, Liu W W, Chin S L 2003 Appl. Phys. B 76 337Google Scholar

    [5]

    Dogariu A, Michael J B, Scully M O, Miles R B 2011 Science 331 442Google Scholar

    [6]

    Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011 Phys. Rev. A 84 051802Google Scholar

    [7]

    Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011 P. Natl. Acad. Sci. USA 108 3130Google Scholar

    [8]

    Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012 P. Natl. Acad. Sci. USA 109 15185Google Scholar

    [9]

    Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012 Opt. Express 20 18784Google Scholar

    [10]

    Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015 Opt. Lett. 40 2469Google Scholar

    [11]

    Yuan L Q, Liu Y, Yao J P, Cheng Y 2019 Adv. Quantum Tech. 2 1900080Google Scholar

    [12]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73Google Scholar

    [13]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [14]

    Fu Y, Cao J C, Yamanouchi K, Xu H L 2022 Ultrafast Sci. 4 9867028Google Scholar

    [15]

    Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022 Opt. Lett. 47 481Google Scholar

    [16]

    Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Lett. 39 2250Google Scholar

    [17]

    Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020 Phys. Rev. A 101 043404Google Scholar

    [18]

    Zhao X D, Nolte S, Ackermann R 2020 Opt. Lett. 45 3661Google Scholar

    [19]

    Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Sci. 2 9761458Google Scholar

    [20]

    Laurain A, Scheller M, Polynkin P 2014 Phys. Rev. Lett. 113 253901Google Scholar

    [21]

    Dogariu A, Miles R B 2016 Opt. Express 24 A544Google Scholar

    [22]

    Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012 Phys. Rev. A 86 033831Google Scholar

    [23]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014 Opt. Express 22 12750Google Scholar

    [24]

    Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003Google Scholar

    [25]

    Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013 New J. Phys. 15 023046Google Scholar

    [26]

    Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015 Phys. Rev. Lett. 115 133203Google Scholar

    [27]

    Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 6 8347Google Scholar

    [28]

    Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016 Phys. Rev. Lett. 116 143007Google Scholar

    [29]

    Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017 Phys. Rev. Lett. 119 203205Google Scholar

    [30]

    Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018 Phys. Rev. Lett. 120 083205Google Scholar

    [31]

    Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018 Phys. Rev. Lett. 120 133208Google Scholar

    [32]

    Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018 Appl. Phys. B 124 73

    [33]

    Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019 Phys. Rev. Lett. 123 203201Google Scholar

    [34]

    Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019 Phys. Rev. Lett. 122 013202Google Scholar

    [35]

    Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020 Phys. Rev. Lett. 125 053201Google Scholar

    [36]

    Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013 Phys. Rev. X 3 041009Google Scholar

    [37]

    Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014 Opt. Express 22 3151Google Scholar

    [38]

    Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015 J. Phys. B 48 094001Google Scholar

    [39]

    Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014 Phys. Rev. A 89 033833Google Scholar

    [40]

    Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019 Phys. Rev. A 100 031402Google Scholar

    [41]

    Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014 Phys. Rev. A 90 042504Google Scholar

    [42]

    Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014 Phys. Rev. A 89 042508Google Scholar

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究. 物理学报, 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [3] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [4] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [5] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [6] 王昕, 康哲铭, 刘龙, 范贤光. 基于中值滤波和非均匀B样条的拉曼光谱基线校正算法. 物理学报, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [7] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [8] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [9] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [10] 梁源, 邢怀中, 晁明举, 梁二军. CO2激光烧结合成负热膨胀材料Sc2(MO4)3(M=W, Mo)及其拉曼光谱. 物理学报, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [11] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [12] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究. 物理学报, 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [13] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [14] 臧航, 王志光, 庞立龙, 魏孔芳, 姚存峰, 申铁龙, 孙建荣, 马艺准, 缑洁, 盛彦斌, 朱亚滨. 离子注入ZnO薄膜的拉曼光谱研究. 物理学报, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [15] 周文平, 万松明, 张 霞, 张庆礼, 孙敦陆, 仇怀利, 尤静林, 殷绍唐. PbMoO4晶体生长基元和生长习性的高温拉曼光谱研究. 物理学报, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [16] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] 孙敦陆, 仇怀利, 杭 寅, 张连瀚, 祝世宁, 王爱华, 殷绍唐. 化学计量比LiNbO3晶体的激光显微拉曼光谱研究. 物理学报, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  5303
  • PDF下载量:  116
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-10-05
  • 修回日期:  2022-11-14
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回