-
基于Rydberg原子的量子微波测量技术具有自校准、可溯源、高灵敏度的显著优点, 针对如何提高量子微波测量灵敏度的问题, 本文从经典电磁理论出发, 提出一种终端短路的1/4波长平行板传输线谐振器电场局域增强结构. 运用场路结合的分析方法以及等效电路方法, 求解平行板传输线谐振器结构端口的反射系数为0.91; 利用场的分析方法推导出端口电场强度随时间变化的解析表达式, 进行时域分析, 绘制了平行板传输线谐振器端口的电场强度瞬态响应曲线, 得出平行板传输线谐振器建立稳态的时间为10 ns. 研究表明, 随着平行板间距的减小, 电场强度增强倍数迅速升高, 功率密度压缩能力大幅提升. 利用|69D5/2
$ \rangle $ 实验验证了该结构在2.1 GHz可实现25 dB的电场强度增强. 本文的研究工作有望在原子测量能力基础上进一步提高测量灵敏度, 推动量子微波测量技术的实用化发展.Rydberg atoms based quantum microwave measurement technology has significant advantages such as self-calibration, traceability, high sensitivity and stable uniformity of measurement. In this work, from the dimension of traditional electromagnetic theory, an electric field local enhancement technique for quantum microwave measurements is developed to improve the sensitivity of quantum microwave receiver. The theoretical basis of this method comes from the different mechanisms of realization of microwave reception in quantum microwave receivers and classical receiver. Classic receivers use antennas to collect microwave energy in space to signal reception; quantum microwave receivers measure the strength of the electric field in the path of a laser beam in an atomic gas chamber (the beam is about 100 µm in diameter) to realize the signal reception. Therefore, the sensitivity of quantum microwave receiver can be improved by increasing the electric field strength in the path of laser beam. The critical physical mechanism is the multi-beam interference at the open end and the short-circuited end of the structure. The results show that with the decrease of gap height of parallel plates, the enhancement factor of electric field strength increases rapidly and the power density compression capability is greatly improved. The |69D5/2$\rangle $ experiments verify that the structure can achieve a 25 dB electric field enhancement at 2.1 GHz. This research is expected to be helpful in improving the sensitivity of measurement based on atomic measurement capabilities and in promoting the practical development of quantum microwave measurement technology.[1] Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279Google Scholar
[3] Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714Google Scholar
[4] Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717Google Scholar
[5] Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341
[6] Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819Google Scholar
[7] Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502Google Scholar
[8] Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203Google Scholar
[9] Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108Google Scholar
[10] Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503Google Scholar
[11] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455Google Scholar
[12] 吴逢川, 林沂, 武博, 付云起 2022 物理学报 71 207402Google Scholar
Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402Google Scholar
[13] Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256Google Scholar
[14] Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63Google Scholar
[15] Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057Google Scholar
[16] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 物理学报 71 170702Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar
[17] David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103Google Scholar
[18] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250Google Scholar
[20] Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]
[21] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[22] Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]
[23] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001Google Scholar
[24] Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914Google Scholar
[25] Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20
[26] 郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)
Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)
-
-
[1] Joshua A G, Christopher L H, Andrew S, Dave A A, Stephanie M, Nithiwadee T, Georg R 2014 Appl. Phys. Lett. 105 1683Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Journal of Radio Wave Science 37 279Google Scholar
[3] Zhou Y L, Yan D, Li W 2022 Phys. Rev. A 105 053714Google Scholar
[4] Christopher L H, Matt T S, Joshua A G, Andrew D, David A A, Georg R 2017 J. Appl. Phys. 121 717Google Scholar
[5] Ansari R, Giraud-Héraud Y, Tran Thanh Van J 1996 Dark Matter in Cosmology Quantum Measurements Experimental Gravitation (Vol. 91) (Atlantica Séguier Frontières) p341
[6] Jonathon A S, Arne S, Harald K, Robert L, Tilman P, James P S 2012 Nat. Phys. 8 819Google Scholar
[7] Cox K C, Meyer D H, Fatemi F K 2018 Phys. Rev. Lett. 121 110502Google Scholar
[8] Kai Y, Sun Z S, Miao R Q, Lin Y, Liu Y, An Q, Fu Y Q 2022 Chin. Opt. Lett. 20 081203Google Scholar
[9] Meyer D H, Cox K C, Fatemi F K 2018 Appl. Phys. Lett. 112 211108Google Scholar
[10] Otto J S, Hunter M K, Kjærgaard N 2021 J. Appl. Phys. 129 154503Google Scholar
[11] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Anten. Propag. 69 2455Google Scholar
[12] 吴逢川, 林沂, 武博, 付云起 2022 物理学报 71 207402Google Scholar
Wu F C, Lin Y, Wu B, Fu Y Q 2022 Acta Phys. Sin. 71 207402Google Scholar
[13] Yao J W, An Q, Zhou Y L, Yang K, Wu F C, Fu Y Q 2022 Optics Lett. 47 5256Google Scholar
[14] Christopher H, Mathew S, Abdulaziz H H, Joshua A G, David A A, Georg R, Steven V 2021 IEEE Anten. Propag. Magaz. 63 63Google Scholar
[15] Mao R Q, Lin Y, Kai Y, An Q, Fu Y Q 2022 IEEE Anten. Wire. Propag Lett. 3212057Google Scholar
[16] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起 2022 物理学报 71 170702Google Scholar
Lin Y, Wu F C, Mao R Q, Yao J W, Liu Y, An Q, Fu Y Q 2022 Acta Phys. Sin. 71 170702Google Scholar
[17] David H M, Christopher O B, Donald P F, Kevin C C, Paul D K 2021 Phys. Rev. A 104 043103Google Scholar
[18] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nature Physics. 16 911Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics. 9 250Google Scholar
[20] Quantum-Apertures DARPA https://www.darpa.mil/program/quantum-apertures [2021-05-20]
[21] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501Google Scholar
[22] Anderson D A, Raithel G A, Paradis E G 2019 US Patent 10823775 B2 [2019-06-20]
[23] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett. 120 204001Google Scholar
[24] Wu B, Lin Y, Liao D, Liu Y, An Q, Fu Y Q 2022 Elec. Lett. 58 914Google Scholar
[25] Ida N 2000 Engineering Electromagnetics (Berlin: Springer) p20
[26] 郭艳芳 2009 硕士学位论文 (北京: 中国科学院电子学研究所)
Guo Y F 2009 M. S. Thesis (Beijing: Institute of Electrics, Chinese Academy of Sciences) (in Chinese)
计量
- 文章访问数: 4324
- PDF下载量: 126
- 被引次数: 0