搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同硫压退火对溅射沉积ZnS薄膜性能的影响

党新志 张仁刚 张鹏 于润升 况鹏 曹兴忠 王宝义

引用本文:
Citation:

不同硫压退火对溅射沉积ZnS薄膜性能的影响

党新志, 张仁刚, 张鹏, 于润升, 况鹏, 曹兴忠, 王宝义

Effect of different sulfur pressure annealing on properties of sputtering-deposited ZnS thin films

Dang Xin-Zhi, Zhang Ren-Gang, Zhang Peng, Yu Run-Sheng, Kuang Peng, Cao Xing-Zhong, Wang Bao-Yi
PDF
HTML
导出引用
  • ZnS作为一种宽带隙半导体, 以其优异的光电性能近年来受到广泛关注, 在太阳能电池、光催化剂以及传感器方面有着广阔的应用前景. 本文首先以射频磁控溅射方法沉积了ZnS薄膜, 然后在600 ℃温度和不同硫压下进行退火, 通过X射线衍射、扫描电子显微镜、能量散射X射线谱、紫外-可见透射光谱以及慢正电子多普勒展宽谱对ZnS薄膜的晶体结构、表面形貌、晶粒尺寸、成分、透光率以及缺陷进行分析. 结果表明: 硫气氛后退火能够改善ZnS薄膜结晶性, 退火后ZnS薄膜光学带隙为3.43—3.58 eV. 当硫压高于0.49 atm(1 atm = 1.01×105 Pa)时, ZnS内部硫间隙原子以及表面单质硫降低了薄膜在可见光区的透光率. 慢正电子多普勒展宽谱结果还表明, ZnS薄膜的缺陷浓度由表层到内层逐渐降低, 薄膜缺陷随着硫压增加而降低. 同时, 3γ湮没证明了薄膜内部较为致密, 硫化会导致薄膜开孔率增加. 吸附硫通过内扩散占据了晶体中硫空位缺陷的位置, 导致缺陷浓度降低, 进而改善了薄膜质量.
    ZnS, a kind of wide-band gap semiconductor, has attracted extensive attention in recent years due to its excellent photoelectric performance, which has broad application prospects in solar cells, photocatalysts and sensors. In this work, ZnS thin films are first deposited by radio-frequency (RF) magnetron sputtering, and then annealed at 600 ℃ and different sulfur pressures. The crystal structure, surface morphology, grain size, composition, transmittance and defects of ZnS thin films are analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-vis transmission spectra, and positron annihilation Doppler broadening spectroscopy. The results show that the crystallinities of ZnS films can be improved by being annealed in sulfur atmosphere, and the optical band gaps of ZnS films after being annealed are in a range of 3.43–3.58 eV. When the sulfur pressure is higher than 0.49 atm, the sulfur interstitial atoms in the ZnS and the elemental sulfur on the surface reduce the transmittance of the film in the visible region. The Doppler broadening spectroscopy results also show that the defect concentrations of ZnS films decrease gradually from their surface layers to the inner layers, and the defects of ZnS films decrease with the increase of sulfur pressure. Meanwhile, the 3γ annihilation also proves that the interior of the film is relatively dense, and the open porosity of the film will increase due to vulcanization. Adsorbed sulfur occupies the position of sulfur vacancy defect in the crystal through internal diffusion, which leads the defect concentration to decrease and the film quality to be improved.
      通信作者: 张仁刚, zhangrengang@wust.edu.cn ; 张鹏, zhangpeng@ihep.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0210002)和国家自然科学基金(批准号: 11975173, 11705212)资助的课题.
      Corresponding author: Zhang Ren-Gang, zhangrengang@wust.edu.cn ; Zhang Peng, zhangpeng@ihep.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0210002) and the National Natural Science Foundation of China (Grant Nos. 11975173, 11705212).
    [1]

    Liu C, Mu L, Jia J, Zhou X, Lin Y 2013 Electrochim. Acta 111 179Google Scholar

    [2]

    Lin Y B, Lin Y, Meng Y, Wang Y 2014 Ceram. Int. 40 8157Google Scholar

    [3]

    Wang C, Li J, Feng W, Ye Y, Guo H 2021 Optik 242 167095Google Scholar

    [4]

    Le Donne A, Cavalcoli D, Mereu R A, Perani M, Pagani L, Acciarri M, Binetti S 2017 Mater Sci Semicond Process 71 7Google Scholar

    [5]

    Nayef U M 2017 Optik 130 441Google Scholar

    [6]

    Khan T M, Zakria M, Ahmad M, Shakoor R I 2014 J. Lumin. 147 97Google Scholar

    [7]

    Cheng Y C, Jin C Q, Gao F, Wu X L, Zhong W, Li S H, Chu P K 2009 J. Appl. Phys. 106 123101Google Scholar

    [8]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [9]

    Zapien J A, Jiang Y, Meng X M, Chen W, Au F C K, Lifshitz Y, Lee S T 2004 Appl. Phys. Lett. 84 1189Google Scholar

    [10]

    Cheng G, Hu D, Chen P, Duan Y, Zhao Y, Ma Y, Liu S 2012 Thin Solid Films 520 7153Google Scholar

    [11]

    Ummartyotin S, Infahsaeng Y 2016 Renew Sust. Energ. Rev. 55 17Google Scholar

    [12]

    Park S, Sun G J, Kim S, Lee S, Lee C 2015 Electron. Mater. Lett. 11 572Google Scholar

    [13]

    Thangavel S, Krishnamoorthy K, Kim S J, Venugopal G 2016 J. Alloys Compd. 683 456Google Scholar

    [14]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [15]

    Lee G, Wu J J 2017 Powder Technol. 318 8Google Scholar

    [16]

    Shin S W, Kang S R, Yun J H, Moholkar A V, Moon J H, Lee J Y, Kim J H 2011 Sol. Energy Mater Sol. Cells 95 856Google Scholar

    [17]

    Karimi A, Sohrabi B, Vaezi M R 2018 Thin Solid Films 651 97Google Scholar

    [18]

    Ahmed A A, Eisa M H, Abdulla M D 2022 Chalcogenide Lett. 19 591Google Scholar

    [19]

    Amotchkina T, Trubetskov M, Hahner D, Pervak V 2020 Appl. Opt. 59 A40Google Scholar

    [20]

    Cui A, Sun C, Wang F, Ye Z 2021 Infrared. Phys. Technol. 114 103667Google Scholar

    [21]

    Liu W S, Huang C S, Chen S Y, Lee M Y, Kuo H C 2021 J. Alloys Compd. 884 161015Google Scholar

    [22]

    Ghosh P K, Jana S, Nandy S, Chattopadhyay K K 2007 Mater. Res. Bull. 42 505Google Scholar

    [23]

    Wang X, Shi J, Feng Z, Li M, Li C 2011 Phys. Chem. Chem. Phys. 13 4715Google Scholar

    [24]

    Miller A P 1941 Lange’s Handbook of Chemistry (4th Ed.) (Washington: Amer Public Health Assoc inc) p1324

    [25]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 物理学报 66 29Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 29Google Scholar

    [26]

    Imran M, Saleem A, Khan N A, Mehmood N 2018 Thin Solid Films 648 31Google Scholar

    [27]

    Bandic Z Z, Piquette E C, McCaldin J O, McGill T C 1998 Appl. Phys. Lett. 72 2862Google Scholar

    [28]

    Shan R, Yi J, Zhong J X, Yang S 2019 J. Mater. Sci. Mater. Electron. 30 13230Google Scholar

    [29]

    Chen S Z, Yu R S, Song L G, Zhang R G, Cao X Z, Wang B Y, Zhang P 2019 Appl. Surf. Sci. 498 143876Google Scholar

    [30]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Stat. Sol. 15 627Google Scholar

    [31]

    Hasaneen M F, Ali H M, Abd El-Raheem M M, Hakeem A M A 2020 Mater Sci. Eng. B 262 114704Google Scholar

    [32]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [33]

    Yu R S, Ito K, Hirata K, Zheng W, Kobayashi Y 2003 Appl. Phys. 6 3340Google Scholar

    [34]

    Wang B Y, Ma Y Y, Zhang Z, Yu R S, Wang P 2008 Appl. Surf. Sci. 255 119Google Scholar

  • 图 1  不同硫压条件下退火ZnS薄膜的XRD图

    Fig. 1.  XRD patterns of annealed ZnS films under different sulfur pressures.

    图 2  溅射沉积ZnS薄膜在硫蒸气中退火前后SEM图

    Fig. 2.  SEM images of sputter-deposited ZnS films before and after annealing in sulfur vapor.

    图 3  ZnS薄膜(D#样品)的EDS图

    Fig. 3.  EDS diagram of ZnS thin film (D#).

    图 4  不同硫压条件下退火ZnS薄膜紫外-可见透射光谱

    Fig. 4.  UV-Vis transmission spectra of ZnS thin films annealed with different sulfur pressure.

    图 5  不同硫压条件下退火ZnS薄膜的吸收系数$ {\left(\alpha h\nu \right)}^{2} $与入射光子能量的关系曲线

    Fig. 5.  Variation of $ {\left(\alpha h\nu \right)}^{2} $ with for annealed ZnS films with different sulfur pressure.

    图 6  不同硫压条件下退火的ZnS薄膜3γ湮没图

    Fig. 6.  3γ profiles as a function of positron implantation energy for ZnS films annealed with different sulfur pressure.

    图 7  不同硫压条件下退火的ZnS薄膜的慢正电子DBS图 (a) E-S曲线; (b) E-W曲线; (c) S-W曲线

    Fig. 7.  Positron annihilation DBS of ZnS films annealed with different sulfur pressure: (a) E-S curves; (b) E-W curves; (c) S-W curves.

    表 1  不同硫压下退火的ZnS薄膜(111)晶面的晶体参数

    Table 1.  Crystal parameters of (111) crystal planes of ZnS films annealed under the different sulfur pressures.

    样品晶面FWHM晶粒尺寸/nm
    A(111)0.50940.8
    B(111)0.34460.4
    C(111)0.29171.4
    D(111)0.20999.4
    E(111)0.197105.5
    下载: 导出CSV

    表 2  不同硫压条件下退火的ZnS样品的EDS测试结果

    Table 2.  EDS results of ZnS samples annealed under the different sulfur pressures.

    样品ZnSZn/S
    A17.5318.770.94
    B19.4218.671.04
    C19.2518.631.03
    D16.1715.091.07
    E32.4331.611.03
    as-deposited ZnS21.275.813.66
    下载: 导出CSV
  • [1]

    Liu C, Mu L, Jia J, Zhou X, Lin Y 2013 Electrochim. Acta 111 179Google Scholar

    [2]

    Lin Y B, Lin Y, Meng Y, Wang Y 2014 Ceram. Int. 40 8157Google Scholar

    [3]

    Wang C, Li J, Feng W, Ye Y, Guo H 2021 Optik 242 167095Google Scholar

    [4]

    Le Donne A, Cavalcoli D, Mereu R A, Perani M, Pagani L, Acciarri M, Binetti S 2017 Mater Sci Semicond Process 71 7Google Scholar

    [5]

    Nayef U M 2017 Optik 130 441Google Scholar

    [6]

    Khan T M, Zakria M, Ahmad M, Shakoor R I 2014 J. Lumin. 147 97Google Scholar

    [7]

    Cheng Y C, Jin C Q, Gao F, Wu X L, Zhong W, Li S H, Chu P K 2009 J. Appl. Phys. 106 123101Google Scholar

    [8]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar

    [9]

    Zapien J A, Jiang Y, Meng X M, Chen W, Au F C K, Lifshitz Y, Lee S T 2004 Appl. Phys. Lett. 84 1189Google Scholar

    [10]

    Cheng G, Hu D, Chen P, Duan Y, Zhao Y, Ma Y, Liu S 2012 Thin Solid Films 520 7153Google Scholar

    [11]

    Ummartyotin S, Infahsaeng Y 2016 Renew Sust. Energ. Rev. 55 17Google Scholar

    [12]

    Park S, Sun G J, Kim S, Lee S, Lee C 2015 Electron. Mater. Lett. 11 572Google Scholar

    [13]

    Thangavel S, Krishnamoorthy K, Kim S J, Venugopal G 2016 J. Alloys Compd. 683 456Google Scholar

    [14]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [15]

    Lee G, Wu J J 2017 Powder Technol. 318 8Google Scholar

    [16]

    Shin S W, Kang S R, Yun J H, Moholkar A V, Moon J H, Lee J Y, Kim J H 2011 Sol. Energy Mater Sol. Cells 95 856Google Scholar

    [17]

    Karimi A, Sohrabi B, Vaezi M R 2018 Thin Solid Films 651 97Google Scholar

    [18]

    Ahmed A A, Eisa M H, Abdulla M D 2022 Chalcogenide Lett. 19 591Google Scholar

    [19]

    Amotchkina T, Trubetskov M, Hahner D, Pervak V 2020 Appl. Opt. 59 A40Google Scholar

    [20]

    Cui A, Sun C, Wang F, Ye Z 2021 Infrared. Phys. Technol. 114 103667Google Scholar

    [21]

    Liu W S, Huang C S, Chen S Y, Lee M Y, Kuo H C 2021 J. Alloys Compd. 884 161015Google Scholar

    [22]

    Ghosh P K, Jana S, Nandy S, Chattopadhyay K K 2007 Mater. Res. Bull. 42 505Google Scholar

    [23]

    Wang X, Shi J, Feng Z, Li M, Li C 2011 Phys. Chem. Chem. Phys. 13 4715Google Scholar

    [24]

    Miller A P 1941 Lange’s Handbook of Chemistry (4th Ed.) (Washington: Amer Public Health Assoc inc) p1324

    [25]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 物理学报 66 29Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 29Google Scholar

    [26]

    Imran M, Saleem A, Khan N A, Mehmood N 2018 Thin Solid Films 648 31Google Scholar

    [27]

    Bandic Z Z, Piquette E C, McCaldin J O, McGill T C 1998 Appl. Phys. Lett. 72 2862Google Scholar

    [28]

    Shan R, Yi J, Zhong J X, Yang S 2019 J. Mater. Sci. Mater. Electron. 30 13230Google Scholar

    [29]

    Chen S Z, Yu R S, Song L G, Zhang R G, Cao X Z, Wang B Y, Zhang P 2019 Appl. Surf. Sci. 498 143876Google Scholar

    [30]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Stat. Sol. 15 627Google Scholar

    [31]

    Hasaneen M F, Ali H M, Abd El-Raheem M M, Hakeem A M A 2020 Mater Sci. Eng. B 262 114704Google Scholar

    [32]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [33]

    Yu R S, Ito K, Hirata K, Zheng W, Kobayashi Y 2003 Appl. Phys. 6 3340Google Scholar

    [34]

    Wang B Y, Ma Y Y, Zhang Z, Yu R S, Wang P 2008 Appl. Surf. Sci. 255 119Google Scholar

  • [1] 赵其琛, 郝瑞亭, 刘思佳, 刘欣星, 常发冉, 杨敏, 陆熠磊, 王书荣. 单靶溅射制备铜锌锡硫薄膜及原位退火研究. 物理学报, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [2] 张鑫鑫, 靳映霞, 叶晓松, 王茺, 杨宇. 高速率沉积磁控溅射技术制备Ge点的退火生长研究. 物理学报, 2014, 63(15): 156802. doi: 10.7498/aps.63.156802
    [3] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [4] 江强, 毛秀娟, 周细应, 苌文龙, 邵佳佳, 陈明. 外加磁场对磁控溅射制备氮化硅陷光薄膜的影响. 物理学报, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [5] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [6] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [7] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [8] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [9] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [10] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质. 物理学报, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [11] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [12] 苏海桥, 薛书文, 陈猛, 李志杰, 袁兆林, 付玉军, 祖小涛. Ti离子注入和退火对ZnS薄膜结构和光学性质的影响. 物理学报, 2009, 58(10): 7108-7113. doi: 10.7498/aps.58.7108
    [13] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [14] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [15] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [16] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [17] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [18] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [19] 王宝义, 张仁刚, 张 辉, 万冬云, 魏 龙. ZnO退火条件对硫化法制备的ZnS薄膜特性的影响. 物理学报, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [20] 谢大弢, 赵夔, 王莉芳, 朱凤, 全胜文, 孟铁军, 张保澄, 陈佳洱. 用磁控溅射和真空硒化退火方法制备高质量的铜铟硒多晶薄膜. 物理学报, 2002, 51(6): 1377-1382. doi: 10.7498/aps.51.1377
计量
  • 文章访问数:  2198
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 修回日期:  2022-11-03
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-02-05

/

返回文章
返回