-
硫化氢(H2S)作为一种强腐蚀性且具有剧毒的气体, 在化工、能源、环境等多个领域都是重要的中间产物或排放污染物, 在线精确测量其浓度对工艺过程控制、安全生产具有重要意义. 可调谐二极管激光吸收光谱(TDLAS)作为一种定量吸收光谱技术, 适用于大气环境监测、工业过程控制等领域H2S浓度高精度在线测量. 考虑到HITRAN2020数据库中H2S的谱线参数主要来自基于半经验理论模型的计算, 且缺乏实验数据验证, 本文首先采用直接吸收(DAS)法扫描获得H2S分子6320—6350 cm–1波段内谱线吸收截面, 选取其中6组吸收较强、相对独立、具有应用潜力的特征谱线作为实验测量的目标谱线; 然后采用免标定、高信噪比的波长调制-直接吸收(WM-DAS)法测量了该6组谱线在不同压力下的吸收截面并用Voigt, Raution等线型函数对吸收截面进行最小二乘拟合, 对谱线的碰撞展宽系数、线强度、Dicke收敛系数等光谱常数进行高精度测量, 其中吸收截面拟合的残差标准差低至7×10–5, 谱线线强度的测量不确定度小于2%, 碰撞展宽系数、Dicke收敛系数、速率依赖系数的测量不确定度小于10%. 完善了H2S光谱数据库, 为H2S浓度高精度测量提供基础光谱数据.
-
关键词:
- 硫化氢 /
- 波长调制-直接吸收光谱 /
- 碰撞展宽 /
- 线强度
As a highly corrosive and highly toxic gas, hydrogen sulfide (H2S) is an important intermediate product or pollutant in many fields such as chemical industry, energy and environment. Accurate online measurement of its concentration is of great significance for process control and production safety. Tunable diode laser absorption spectroscopy (TDLAS), as a quantitative absorption spectroscopy technique, is suitable for high-precision on-line measurement of H2S concentration in atmospheric environmental monitoring and industrial processes control. Considering that most of the spectroscopic parameters of H2S in the HITRAN2020 database are mainly calculated based on semi-empirical theoretical model and the experimental data to support them are lacking. In this work, direct absorption spectroscopy (DAS) method is firstly used to measure the absorption spectra of H2S in the band of 6320–6350 cm–1. Six groups of characteristic lines with strong absorption and relative independence are selected as the target transitions for experimental measurement. Then, the wavelength modulation-direct absorption (WM-DAS) method with no calibration and high signal-to-noise ratio is used to measure the absorbances of the six groups of transitions under different pressures. Voigt, Raution and quadratic speed-dependent Voigt profiles fit the measured absorbances by least squares method in order to obtain the spectroscopic parameters such as the collision broadening coefficient, line strength and Dicke narrowing coefficient. And the minimum standard deviation of residual error of absorbances is 7×10–5. The measurement uncertainty of each line strength is less than 2%, and the uncertainty of collision broadening coefficients, Dicke narrowing coefficients and the speed-dependent coefficients are all less than 10%. This work is helpful in improving the H2S spectral database and providing the spectral data basis for the high-precision measurement of H2S concentration.-
Keywords:
- hydrogen sulfide /
- wavelength modulation-direct absorption spectrum /
- collisional broadening /
- line strength
[1] Zhang C, Wang X, Liu H, Liu C, Li S, Xue J, Zeng X 2020 Fuel 269 117233Google Scholar
[2] Li S, Huo F, Yin C 2022 Dyes. Pigm. 197 109825Google Scholar
[3] Mohammed A, Devi P (Singh J, et al. ed) 2021 Hazardous Gases (Academic Press) pp209–223
[4] Chen L, Li W, Zhao Y, Zhou Y, Zhang S, Meng L 2022 Bioresour. Technol. 345 126557Google Scholar
[5] Malone Rubright S L, Pearce L L, Peterson J 2017 Nitric Oxide 71 1Google Scholar
[6] GB/T 33443–2016 p12
[7] Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar
[8] 王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar
[9] Shao L, Fang B, Zheng F, Qiu X, He Q, Wei J, Li C, Zhao W 2019 Spectrochim. Acta, Part A 222 117118Google Scholar
[10] Wang Z, Tian C, Qian S, Yu Y, Chang J, Zhang Q, Feng Y, Li H, Feng Z 2022 Opt. Laser Technol. 145 107483Google Scholar
[11] 彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145
Peng Z M, He S L, Zhou P L, Du Y J, Wang Z, Ding YJ, Wu YX, Lv J F 2022 Thermal Power Generat. 51 145
[12] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B Lasers Opt. 117 543Google Scholar
[13] Azzam A a A A, Yurchenko S N, Tennyson J, Martin-Drumel M-A, Pirali O 2013 J. Quant. Spectrosc. Radiat. Transfer 130 341Google Scholar
[14] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar
[15] Mouelhi M, Cuisset A, Hindle F, Jellali C, Galalou S, Aroui H, Bocquet R, Mouret G, Rohart F 2020 J. Quant. Spectrosc. Radiat. Transfer 247 106955Google Scholar
[16] Naumenko O V, Polovtseva E R 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106604Google Scholar
[17] Ciaffoni L, Cummings B L, Denzer W, Peverall R, Procter S R, Ritchie G A D 2008 Appl. Phys. B:Lasers Opt. 92 627Google Scholar
[18] Yan T, Kochanov R V, Rothman L S, Gordon I E https:// zenodo.org/record/345381#.YmpMA4VBx3h [2022-4-25 ]
[19] Dicke R H 1952 Phys. Rev. 89 472
[20] Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Radiat. Transfer 105 525Google Scholar
[21] Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61Google Scholar
[22] Li J D, Peng Z M, Ding Y J 2020 Opt. Lasers Eng. 126 105875Google Scholar
[23] Galatry L 1961 Phys. Rev. 122 1218Google Scholar
[24] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[25] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[26] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[27] Reid J, Labrie D 1981 Appl. Phys. B: Lasers Opt. 26 203
[28] Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Radiat. Transfer 175 90Google Scholar
[29] Li J D, Ding Y J, Li Z, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 276 107901Google Scholar
-
图 7 (a) ν0 = 6344.000 cm–1的谱线ΔνL和IA与压力的线性拟合结果, 分别由VP, RP和qSDVP得到; (b) νH与压力的线性拟合结果, 由RP得到; γ2与压力的线性拟合结果, 由qSDVP得到
Fig. 7. For the transition centered at 6344.000 cm–1 : (a) The linear fitting results of ΔνL and IA with pressure, which were obtained by VP, RP and qSDVP respectively; (b) the linear fitting results of νH and pressure, for RP; the linear fitting results of γ2 and pressure, for qSDVP.
表 1 H2S在6320—6350 cm–1波段谱线的光谱常数测量结果
Table 1. Measured spectroscopic parameters of the H2S transitions in the range of 6320—6350 cm–1.
ν0/cm–1 φ ${\gamma _{ { {\text{H} }_{\text{2} } }{\text{S-air} } } }\left( { {T_0} } \right)$
/(10–2 cm–1·atm–1)${\beta _0}\left( {{T_0}} \right)$/
(10–2 cm–1·atm–1)${\gamma _2}\left( {{T_0}} \right)$/
(10–3 cm–1·atm–1)S (T0)
/ (10–3 cm–2·atm–1)Meas. Ref. Meas. Ref. 6320.605 VP 8.99 c 8.81 2.57 a 2.63 RP 9.18 b 2.80 c 2.65 a qSDVP 9.18 b 7.85 c 2.65 a 6328.883 VP 8.62 b 8.79 3.19 a 3.35 RP 8.81 b 1.75 c 3.24 a qSDVP 8.83 b 5.89 c 3.26 a 6336.617 VP 7.87 b 8.26 4.26 a 3.49 RP 8.08 b 1.05 c 4.31 a qSDVP 8.13 b 4.52 b 4.32 a 6340.432 VP 9.07 b 10.4 2.43 a 2.66 RP 9.18 b 2.38 b 2.49 a qSDVP 9.16 b 7.00 b 2.49 a 6344.000 VP 7.79 b 6.96 4.22 a 3.27 RP 8.00 a 2.18 a 4.33 a qSDVP 7.96 a 7.36 b 4.34 a 6347.749 VP 8.62 b 8.40 2.24 a 2.36 RP 8.79 a 2.40 b 2.29 a qSDVP 8.75 a 7.80 c 2.30 a 注: a不确定度0—2%; b不确定度2%—5%; c不确定度5%—10%. -
[1] Zhang C, Wang X, Liu H, Liu C, Li S, Xue J, Zeng X 2020 Fuel 269 117233Google Scholar
[2] Li S, Huo F, Yin C 2022 Dyes. Pigm. 197 109825Google Scholar
[3] Mohammed A, Devi P (Singh J, et al. ed) 2021 Hazardous Gases (Academic Press) pp209–223
[4] Chen L, Li W, Zhao Y, Zhou Y, Zhang S, Meng L 2022 Bioresour. Technol. 345 126557Google Scholar
[5] Malone Rubright S L, Pearce L L, Peterson J 2017 Nitric Oxide 71 1Google Scholar
[6] GB/T 33443–2016 p12
[7] Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar
[8] 王振, 杜艳君, 丁艳军, 彭志敏 2020 物理学报 69 064205Google Scholar
Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar
[9] Shao L, Fang B, Zheng F, Qiu X, He Q, Wei J, Li C, Zhao W 2019 Spectrochim. Acta, Part A 222 117118Google Scholar
[10] Wang Z, Tian C, Qian S, Yu Y, Chang J, Zhang Q, Feng Y, Li H, Feng Z 2022 Opt. Laser Technol. 145 107483Google Scholar
[11] 彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145
Peng Z M, He S L, Zhou P L, Du Y J, Wang Z, Ding YJ, Wu YX, Lv J F 2022 Thermal Power Generat. 51 145
[12] Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B Lasers Opt. 117 543Google Scholar
[13] Azzam A a A A, Yurchenko S N, Tennyson J, Martin-Drumel M-A, Pirali O 2013 J. Quant. Spectrosc. Radiat. Transfer 130 341Google Scholar
[14] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar
[15] Mouelhi M, Cuisset A, Hindle F, Jellali C, Galalou S, Aroui H, Bocquet R, Mouret G, Rohart F 2020 J. Quant. Spectrosc. Radiat. Transfer 247 106955Google Scholar
[16] Naumenko O V, Polovtseva E R 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106604Google Scholar
[17] Ciaffoni L, Cummings B L, Denzer W, Peverall R, Procter S R, Ritchie G A D 2008 Appl. Phys. B:Lasers Opt. 92 627Google Scholar
[18] Yan T, Kochanov R V, Rothman L S, Gordon I E https:// zenodo.org/record/345381#.YmpMA4VBx3h [2022-4-25 ]
[19] Dicke R H 1952 Phys. Rev. 89 472
[20] Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Radiat. Transfer 105 525Google Scholar
[21] Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61Google Scholar
[22] Li J D, Peng Z M, Ding Y J 2020 Opt. Lasers Eng. 126 105875Google Scholar
[23] Galatry L 1961 Phys. Rev. 122 1218Google Scholar
[24] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar
[25] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[26] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[27] Reid J, Labrie D 1981 Appl. Phys. B: Lasers Opt. 26 203
[28] Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Radiat. Transfer 175 90Google Scholar
[29] Li J D, Ding Y J, Li Z, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 276 107901Google Scholar
计量
- 文章访问数: 4392
- PDF下载量: 102
- 被引次数: 0