搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量

焦月春 白景旭 宋蓉 韩小萱 赵建明

引用本文:
Citation:

超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量

焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明

Preparation of ultra-cold (36D5/2+ 6S1/2) Rydberg molecule and measurement of its permanent electric dipole moment

Jiao Yue-Chun, Bai Jing-Xu, Song Rong, Han Xiao-Xuan, Zhao Jian-Ming
PDF
HTML
导出引用
  • 里德伯-基态分子由一个里德伯原子和一个基态原子组成, 束缚机制是里德伯电子与基态原子的低能电子散射相互作用. 理论上, 通过低能电子散射Fermi赝势模型, 数值计算了铯(36D5/2+6S1/2)里德伯-基态分子的绝热势能曲线, 提取了里德伯分子的束缚能和平衡核间距等光谱参数. 实验上, 利用双光子光缔合技术成功制备了散射三重态(TΣ, Triplet)和散射单重态-三重态混合(S,TΣ, Mixed)形成的里德伯-基态分子, 获得了里德伯分子的光缔合光谱, 测量的势阱深度与理论计算结果相吻合. 另外, 以散射三重态为例, 分析了里德伯分子的光缔合光谱在外加电场中的展宽现象, 获得其平均永久电偶极矩$|\bar{d}|$为(12.10 ± 1.65) Debye ((4.76 ± 0.65) ea0), 与理论计算结果保持一致. 该研究为实验上制备D态里德伯-基态分子提供了可行的实验方案, 对理解里德伯分子的光谱特性具有重要意义.
    Ultra-cold long-range Rydberg molecules, consisting of a Rydberg atom and a ground-state atom or another Rydberg atom or ion, have attracted considerable attention due to their exaggerated properties, such as huge size, long chemical bond, large polarization and electric dipole moment, abundant vibrational states and exotic adiabatic potentials. The binding mechanism of Rydberg molecules is a low-energy scattering interaction between the Rydberg electron and the ground state atom for ground-Rydberg molecules or long-range multipole interaction for Rydberg-atom macrodimers and Rydberg-ion molecules, in contrast to covalent bonds, ionic bonds of normal and van der Waals interaction. Owing to its huge size, the dynamic evolution becomes slow compared with normal diatomic molecules and the ultra-long chemical bonds allow being imaged directly by high resolution imaging technology, which makes it convenient to observe the molecular dynamics process chemical reaction process in real time. The investigation of Rydberg molecules will be significant for understanding the mechanism of molecular collision and quantum chemical reaction.In this work, we study the ultra-cold Rydberg-ground state molecules theoretically and experimentally. Theoretically, we calculate the adiabatic potential energy curve of cesium (36D5/2+ 6S1/2) Rydberg molecule based on the Fermi model of low energy electron scattering by numerically solving the Hamiltonian of Rydberg molecules. And also, we obtain its characteristic parameters, such as the potential depth, binding energy and equilibrium nuclear distance of Rydberg molecule. Experimentally, the Rydberg-ground molecules are investigated by a photoassociation spectroscopy, where two laser pulses are used to achieve a two-photon transition, and their spectra are obtained by ion detection technology. We successfully observe the Rydberg-ground state molecular spectra that correspond to a scattering triplet and a scattering single-triplet mixture (S,TΣ). The measured binding energy of Rydberg-ground state molecules is in good agreement with the theoretical result. In addition, taking the Rydberg-ground state molecules formed by scattering triplet (TΣ) for example, we demonstrate the spectrum broadening of Rydberg molecules in a weak electric field, from which we obtain the permanent electric dipole moments $|\bar{d}|$ of polar Rydberg-ground state molecules about (12.10$ \pm $1.65) Debye ((4.76$ \pm $0.65) ea0). The results are consistent with the theoretical calculations. Our study provides a feasible scheme for the experimental preparation of D-type Rydberg-ground molecules, which is of great significance in studying the binding mechanism and the spectral characteristics of polar Rydberg molecules.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61835007, 12120101004, 62175136, 12104337)、长江学者和创新团队发展计划 (批准号: RTIRT_17R70)、山西省“1331 工程”重点学科建设计划和山西省科技合作交流专项(批准号: 202104041101015)资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 61835007, 12120101004, 62175136, 12104337), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. RTIRT_17R70), the 1331 project of Shanxi Province, China, and the Scientific Cooperation Exchanges Project of Shanxi Province, China (Grant No. 202104041101015).
    [1]

    Omont A 1977 J. de Phys. 38 1343Google Scholar

    [2]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458Google Scholar

    [3]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709Google Scholar

    [4]

    Chibisov M I, Khuskivadze A A, Fabrikant I I 2002 J. Phys. B 35 L193Google Scholar

    [5]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199Google Scholar

    [6]

    Lesanovsky I, Schmelcher P, Sadeghpour H R 2006 J. Phys. B 39 L69Google Scholar

    [7]

    Bendkowsky V, Bjoern B, Nipper J, Shaffer J P, Robert L, Pfau T 2009 Nature 458 1005Google Scholar

    [8]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L 2013 Phys. Rev. Lett. 111 053001Google Scholar

    [9]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201Google Scholar

    [10]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008Google Scholar

    [11]

    Maclennan J L, Chen Y J, Raithel G 2019 Phys. Rev. A 99 033407Google Scholar

    [12]

    Booth D, Rittenhouse S T, Yang J, Sadeghpour H R, Shaffer J P 2015 Science 348 99Google Scholar

    [13]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [14]

    Sassmannshausen H, Merkt F, Deiglmayr J 2015 Phys. Rev. Lett. 114 133201Google Scholar

    [15]

    Fey C, Hummel F, Schmelcher P 2019 Phys. Rev. A 99 022506Google Scholar

    [16]

    Bai S, Han X, Bai J, Jiao Y, Wang H, Zhao J, Jia S 2020 J. Chem. Phys. 152 084302Google Scholar

    [17]

    Bai S, Han X, Bai J, Jiao Y, Zhao J, Jia S, Raithel G 2020 Phys. Rev. Res. 2 033525Google Scholar

    [18]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys 5 581Google Scholar

    [19]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403(RGoogle Scholar

    [20]

    Duspayev A, Han X, Viray M A, Ma L, Zhao J, Raithel G 2021 Phys. Rev. Res. 3 023114Google Scholar

    [21]

    Deiß M, Haze S, Denschlag J H 2021 Atoms 9 34Google Scholar

    [22]

    Zuber N, Anasuri V S V, Berngruber M, Zou Y Q, Meinert F, Löw R, Pfau T 2022 Nature 605 453Google Scholar

    [23]

    Li W, Pohl T, Rost J M, Rittenhouse S T, Sadeghpour H R, Nipper J, Butscher B, Balewski J B, Bendkowsky V, Löw R 2011 Science 334 1110Google Scholar

    [24]

    Niederprüm T, Thomas O, Eichert T, Lippe C, Pérez-Ríos J, Greene C H, Ott H 2016 Nat. Commun. 7 12820Google Scholar

    [25]

    Weimer H, Müller M, Lesanovsky I, Zoller P, Büchler H 2010 Nat. Phys. 6 382Google Scholar

    [26]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [27]

    Alizadeh E, Orlando T M, Sanche L 2015 Annu. Rev. Phys. Chem. 66 379Google Scholar

  • 图 1  里德伯-基态分子模型. 以里德伯离子核为中心, 基态原子位于轴矢量$\boldsymbol{R}$的位置, 里德伯电子距离核的距离为r. $ {\widehat{S}}_{1} $为里德伯电子自旋, $ {\widehat{S}}_{2} $$ {\widehat{I}}_{2} $分别对应基态原子的电子自旋和核自旋

    Fig. 1.  Model of a Rydberg-ground molecule. The Rydberg core is located in the center, the ground atom is located at the position of the axial vector $\boldsymbol{R}$, and the distance between the Rydberg electron and the core is $ r $. $ {\widehat{S}}_{1} $ is the spin of Rydberg electron, and $ {\widehat{S}}_{2} $ and $ {\widehat{I}}_{2} $ are the spin of the electron and nuclear of the ground atom.

    图 2  数值计算的铯(36D5/2+6S1/2)分子的势能曲线, 彩色的波包为最外层势阱中基态$ \upsilon =0 $的振动波函数

    Fig. 2.  Calculated adiabatic potentials for cesium Rydberg-ground molecule of (36D5/2+6S1/2). The color filled wave packet is the vibration wave function of the outermost potential for $ \upsilon =0 $.

    图 3  (a) 双光子激发能级示意图; (b) 两束激发光反向传播作用于MOT&ODT中心; 里德堡原子和分子由脉冲电场电离后到达MCP, 由boxcar采集和计算机记录; (c) 实验时序图; 关断MOT&ODT光之后, 同时打开两束激发光, 之后由斜坡脉冲电离电场电离里德伯原子和分子, 直流电场用于电偶极矩的研究

    Fig. 3.  (a) Schematic diagram of two photon excitation. (b) Schematic diagram of experimental set up. Two excitation lasers overlap in the center of MOT&ODT. Rydberg atoms and molecules ionized by a pulsed electric field arriving at MCP, which is collected with boxcar and recorded by computer. (c) Experimental sequence diagram. After turning off the MOT&ODT, two excitation lasers are turned on at the same time, and the Rydberg atoms and molecules were ionized by a ramp pulse ionization electric field. The direct current electric field is used to study the electric dipole moment.

    图 4  铯(36D5/2+6S1/2)里德伯-基态分子的双光子光缔合光谱. 红色三角形标记的峰为振动基态$ \upsilon =0 $的里德堡分子信号. 蓝色的短线标记了理论计算的束缚势阱. 插图为阴影区域的放大

    Fig. 4.  Two-color photoassociation spectra of Cs (36D5/2+6S1/2) Rydberg-ground molecule. The short blue line marks the theoretically calculated bound potential well. Red triangles denote the Rydberg-molecular signal for $ \upsilon =0 $. Inset is an enlargement of the shaded area.

    图 5  电场为$ 0.09 $ (a)和$0.37\;\rm{V}/\rm{c}\rm{m}$(b)时, 三重态相互作用形成的里德伯-基态分子的光缔合光谱. 红色实线为理论拟合的分子电偶极矩

    Fig. 5.  Photoassociation spectra of Rydberg ground molecules formed by triplet interaction when the electric field is $ 0.09 $ (a) and $0.37\;\rm{V}/\rm{c}\rm{m}$ (b). Red solid line are the theoretical fitting of molecular electric dipole moment.

  • [1]

    Omont A 1977 J. de Phys. 38 1343Google Scholar

    [2]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458Google Scholar

    [3]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709Google Scholar

    [4]

    Chibisov M I, Khuskivadze A A, Fabrikant I I 2002 J. Phys. B 35 L193Google Scholar

    [5]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B 35 L199Google Scholar

    [6]

    Lesanovsky I, Schmelcher P, Sadeghpour H R 2006 J. Phys. B 39 L69Google Scholar

    [7]

    Bendkowsky V, Bjoern B, Nipper J, Shaffer J P, Robert L, Pfau T 2009 Nature 458 1005Google Scholar

    [8]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L 2013 Phys. Rev. Lett. 111 053001Google Scholar

    [9]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201Google Scholar

    [10]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008Google Scholar

    [11]

    Maclennan J L, Chen Y J, Raithel G 2019 Phys. Rev. A 99 033407Google Scholar

    [12]

    Booth D, Rittenhouse S T, Yang J, Sadeghpour H R, Shaffer J P 2015 Science 348 99Google Scholar

    [13]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [14]

    Sassmannshausen H, Merkt F, Deiglmayr J 2015 Phys. Rev. Lett. 114 133201Google Scholar

    [15]

    Fey C, Hummel F, Schmelcher P 2019 Phys. Rev. A 99 022506Google Scholar

    [16]

    Bai S, Han X, Bai J, Jiao Y, Wang H, Zhao J, Jia S 2020 J. Chem. Phys. 152 084302Google Scholar

    [17]

    Bai S, Han X, Bai J, Jiao Y, Zhao J, Jia S, Raithel G 2020 Phys. Rev. Res. 2 033525Google Scholar

    [18]

    Overstreet K R, Schwettmann A, Tallant J, Booth D, Shaffer J P 2009 Nat. Phys 5 581Google Scholar

    [19]

    Han X, Bai S, Jiao Y, Hao L, Xue Y, Zhao J, Jia S, Raithel G 2018 Phys. Rev. A 97 031403(RGoogle Scholar

    [20]

    Duspayev A, Han X, Viray M A, Ma L, Zhao J, Raithel G 2021 Phys. Rev. Res. 3 023114Google Scholar

    [21]

    Deiß M, Haze S, Denschlag J H 2021 Atoms 9 34Google Scholar

    [22]

    Zuber N, Anasuri V S V, Berngruber M, Zou Y Q, Meinert F, Löw R, Pfau T 2022 Nature 605 453Google Scholar

    [23]

    Li W, Pohl T, Rost J M, Rittenhouse S T, Sadeghpour H R, Nipper J, Butscher B, Balewski J B, Bendkowsky V, Löw R 2011 Science 334 1110Google Scholar

    [24]

    Niederprüm T, Thomas O, Eichert T, Lippe C, Pérez-Ríos J, Greene C H, Ott H 2016 Nat. Commun. 7 12820Google Scholar

    [25]

    Weimer H, Müller M, Lesanovsky I, Zoller P, Büchler H 2010 Nat. Phys. 6 382Google Scholar

    [26]

    Lukin M D, Fleischhauer M, Côté R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [27]

    Alizadeh E, Orlando T M, Sanche L 2015 Annu. Rev. Phys. Chem. 66 379Google Scholar

  • [1] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [3] 廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤. 光晶格作用下里德伯冷原子系统中的二维空间光孤子. 物理学报, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [4] 白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明. 铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱. 物理学报, 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
    [5] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [6] 蔡伟, 许友安, 杨志勇, 苗丽瑶, 赵钟浩. 顺磁性磁光材料维尔德常数解算模型的讨论. 物理学报, 2019, 68(20): 207802. doi: 10.7498/aps.68.20190845
    [7] 白景旭, 韩小萱, 白素英, 焦月春, 赵建明, 贾锁堂. 超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱. 物理学报, 2018, 67(23): 233201. doi: 10.7498/aps.67.20181743
    [8] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [9] 胡晨阳, 刘文良, 徐润东, 武寄洲, 马杰, 肖连团, 贾锁堂. 利用双光缔合光谱技术直接测量超冷铯分子0u+(6S1/2+6P1/2)长程态的转动常数的实验研究. 物理学报, 2015, 64(14): 143302. doi: 10.7498/aps.64.143302
    [10] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [11] 马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂. 超冷铯分子0u+(6P3/2)长程态的高灵敏光缔合光谱研究. 物理学报, 2015, 64(15): 153303. doi: 10.7498/aps.64.153303
    [12] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [13] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [14] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质. 物理学报, 2014, 63(7): 073302. doi: 10.7498/aps.63.073302
    [15] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [16] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [17] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质. 物理学报, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [18] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [19] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究. 物理学报, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [20] 周青春. 理想腔中具有正交偶极矩的级联型三能级原子发射谱. 物理学报, 2006, 55(9): 4618-4623. doi: 10.7498/aps.55.4618
计量
  • 文章访问数:  4136
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 修回日期:  2022-10-22
  • 上网日期:  2022-11-23
  • 刊出日期:  2023-02-05

/

返回文章
返回