搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮气工质10厘米ECRIT中和器实验研究

谈人玮 杨涓 耿海 吴先明 牟浩

引用本文:
Citation:

氮气工质10厘米ECRIT中和器实验研究

谈人玮, 杨涓, 耿海, 吴先明, 牟浩

Experimental study on 10-cm ECRIT neutralizer with nitrogen gas

Tan Ren-Wei, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao
PDF
HTML
导出引用
  • 10厘米电子回旋共振离子推力器(ECRIT)可以多类型气体工作, 应用于吸气式电推进系统具有可行性, 研究氮气工质ECRIT的ECR中和器是研究氮氧工质ECRIT的基础. 当传统氙气工质10厘米ECRIT的ECR中和器以氮气为工质工作时, 由于氮气分子量较低, 离子容易漂移出中和器, 引出电子电流减小, 已不适合以氮气为工质工作. 本文基于10厘米传统ECR中和器, 以抑制离子漂移出中和器、提升电子引出性能为目的, 实验研究适用于氮气工质工作的双极ECR中和器. 结果表明, 在气体质量流率0.04 mg/s、输入功率10 W的条件下, 以氮气为工质工作, 引出电子电流134 mA时, 传统ECR中和器所需的阳极电压为150 V, 而双极ECR中和器仅需50 V的阳极电压, 下降了约67%; 阳极电压40 V时, 传统ECR中和器的功率损耗为1204.82 W/A, 而双极ECR中和器的功率损耗为95.23 W/A, 约为前者的8.3%. 氮气工质双极ECR中和器的离子屏蔽效果显著, 电子引出性能得到改善.
    Electron cyclotron resonance ion thruster (ECRIT) with a diameter of 10 cm can be operated in multiple types of gases and it is feasible to be applied to air-breathing electric propulsion systems. The study on the neutralizer of the ECRIT running in nitrogen gas is the basis for the study on the ECRIT running in nitrogen-oxygen mixed gas. When the ECR neutralizer of typical 10-cm ECRIT running in xenon gas runs in nitrogen gas, the extracted electron current is reduced, because ions tend to drift out of the neutralizer, due to the lower molecular weight of nitrogen. The typical neutralizer is no longer suitable for running in nitrogen gas. In this work, based on the 10-cm typical ECR neutralizer, in order to inhibit ions drifting out of the neutralizer and improve the performance of electron extraction, a bipolar ECR neutralizer suitable for running in nitrogen gas is experimentally studied. The results show that under the conditions of gas mass flow rate of 0.04 mg/s and input power of 10 W, the anode voltage required by the typical ECR neutralizer running in nitrogen gas is 150 V when the extracted electron current is 134 mA. However, the bipolar ECR neutralizer requires only 50-V anode voltage, which decreases by about 67%. When the anode voltage is 40V, the power loss of the typical ECR neutralizer is 1204.82 W/A, while the power loss of the bipolar ECR neutralizer is 95.23 W/A, which is about 8.3% of the former. The ion shielding effect of the bipolar ECR neutralizer running on nitrogen gas is remarkable and the electron extraction performance is improved.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    [1]

    吴先明, 耿海, 贾连军, 蒲彦旭, 贺亚强, 王尚民, 李艳武 2022 真空与低温 28 26Google Scholar

    Wu X M, Geng H, Jia L J, Pu Y X, He Y Q, Wang S M, Li Y W 2022 Vacuum Cryog. 28 26Google Scholar

    [2]

    袁春柱, 张强, 傅丹膺, 赵志明, 张永强, 张永贺, 陆文高, 姚远, 李瀛搏 2021 航天器工程 30 89Google Scholar

    Yuan C Z, Zhang Q, Fu D Y, Zhao Z M, Zhang Y Q, Zhang Y H, Lu W G, Yao Y, Li Y B 2021 Spacecr. Eng. 30 89Google Scholar

    [3]

    Marchioni F, Cappelli M A 2021 J. Appl. Phys. 130 053306Google Scholar

    [4]

    Shabshelowitz A 2013 Ph. D. Dissertation (America: University of Michigan)

    [5]

    Hu P, Shen Y, Yao Z, Mao W, Hu Y, Liu X 2021 Vacuum 190 110275Google Scholar

    [6]

    Schönherr T, Komurasaki K, Romano F, Massuti-Ballester B, Herdrich G 2014 IEEE T. Plasma Sci. 43 287Google Scholar

    [7]

    Yukai M, Daiki K, Kazutaka N 2020 Proceedings of Space Transportation Symposium FY2019 (Sagamihara, Kanagawa Japan: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS) (JAXA)) p002

    [8]

    Yukai M, Kazutaka N Space Transportation Symposium FY2020 (Zoom, Japan: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS) (JAXA)) p050

    [9]

    Jackson S W, Marshall R 2017 J. Spacecr. Rockets 55 632

    [10]

    胡展 2021 硕士学位论文 (西安: 西北工业大学)

    Hu Z 2021 M. S. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [11]

    Nishiyama K, Hosoda S, Tsukizaki R, Kuninaka H 2020 Acta Astronaut. 166 69Google Scholar

    [12]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Sacramento, California: American Institute of Aeronautics and Astronautics) p4318

    [13]

    Morishita T, Tsukizaki R, Morita S, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 165 25Google Scholar

    [14]

    Fu Y, Yang J, Jin Y, Xia X, Meng H 2019 Acta Astronaut. 164 387Google Scholar

    [15]

    Fu Y, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [16]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang M J 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [17]

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 12 1478 (in Chinese) [孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 12 1478]

    [18]

    Yang J, Fu Y, Liu X, Meng H, Jin Y 2018 Plasma Sci. Technol. 20 085402Google Scholar

    [19]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [20]

    Funaki I F I, Kuninaka H K H 2001 Jpn. J. Appl. Phys. 40 2495Google Scholar

    [21]

    Ren L, Wang Y, Ding W, Sun A, Karadag B, Deng Z, Geng J 2022 Rev. Sci. Instrum. 93 034501Google Scholar

  • 图 1  10厘米ECR中和器结构

    Fig. 1.  10 cm ECR neutralizer structure.

    图 2  氙气和氮气工质传统ECR中和器离子密度分布诊断

    Fig. 2.  Ion density distribution diagnosis of typical ECR neutralizer running on nitrogen and xenon gas.

    图 3  双极板结构

    Fig. 3.  Bipolar plate structure.

    图 4  传统ECR中和器的电子引出实验系统

    Fig. 4.  Experiment system for the electron extraction of typical ECR neutralizer.

    图 5  双极ECR中和器的电子引出实验系统

    Fig. 5.  Experiment system for the electron extraction of bipolar ECR neutralizer.

    图 6  双极ECR中和器的静电场仿真模型

    Fig. 6.  Electrostatic field simulation model of bipolar ECR neutralizer.

    图 7  氮气和氙气工质传统ECR中和器的引出电子电流随阳极电压的变化曲线

    Fig. 7.  Extracted electron current vs. anode voltage of typical ECR neutralizer running on nitrogen and xenon gas.

    图 8  不同双极板间隙的双极ECR中和器电流随阳极电压的变化曲线 (a) 总电子电流; (b) 引出与截获电子电流

    Fig. 8.  Current vs. anode voltage at different bipolar plate gaps of bipolar ECR neutralizer: (a) Total electron current; (b) extracted and intercepted electron current.

    图 9  不同双极板间隙的双极ECR中和器电子引出孔附近的电场强度分布

    Fig. 9.  Electric field intensity distribution near electron extraction hole of bipolar ECR neutralizer with different bipolar plate gaps.

    图 10  不同双极板电压的双极ECR中和器电流随阳极电压的变化曲线 (a) 总电子电流; (b) 引出与截获电子电流

    Fig. 10.  Current vs. anode voltage at different bipolar plate potentials of bipolar ECR neutralizer: (a) Total electron current; (b) extracted and intercepted electron current.

    图 11  不同双极板电压的双极ECR中和器电子引出孔附近的电场强度分布

    Fig. 11.  Electric field intensity distribution near electron extraction hole of bipolar ECR neutralizer with different bipolar plate potentials.

    图 12  传统和双极ECR中和器以氮气为工质时的引出电子电流特性

    Fig. 12.  Characteristic of the extracted electron current of typical and bipolar ECR neutralizer running on nitrogen gas.

    图 13  传统和双极ECR中和器以氙气为工质时的引出电子电流特性

    Fig. 13.  Characteristic of the extracted electron current of typical and bipolar ECR neutralizer running on xenon gas.

    图 14  氮气和氙气工质双极ECR中和器的功率损耗

    Fig. 14.  Power loss of bipolar ECR neutralizer running on nitrogen and xenon gas.

  • [1]

    吴先明, 耿海, 贾连军, 蒲彦旭, 贺亚强, 王尚民, 李艳武 2022 真空与低温 28 26Google Scholar

    Wu X M, Geng H, Jia L J, Pu Y X, He Y Q, Wang S M, Li Y W 2022 Vacuum Cryog. 28 26Google Scholar

    [2]

    袁春柱, 张强, 傅丹膺, 赵志明, 张永强, 张永贺, 陆文高, 姚远, 李瀛搏 2021 航天器工程 30 89Google Scholar

    Yuan C Z, Zhang Q, Fu D Y, Zhao Z M, Zhang Y Q, Zhang Y H, Lu W G, Yao Y, Li Y B 2021 Spacecr. Eng. 30 89Google Scholar

    [3]

    Marchioni F, Cappelli M A 2021 J. Appl. Phys. 130 053306Google Scholar

    [4]

    Shabshelowitz A 2013 Ph. D. Dissertation (America: University of Michigan)

    [5]

    Hu P, Shen Y, Yao Z, Mao W, Hu Y, Liu X 2021 Vacuum 190 110275Google Scholar

    [6]

    Schönherr T, Komurasaki K, Romano F, Massuti-Ballester B, Herdrich G 2014 IEEE T. Plasma Sci. 43 287Google Scholar

    [7]

    Yukai M, Daiki K, Kazutaka N 2020 Proceedings of Space Transportation Symposium FY2019 (Sagamihara, Kanagawa Japan: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS) (JAXA)) p002

    [8]

    Yukai M, Kazutaka N Space Transportation Symposium FY2020 (Zoom, Japan: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS) (JAXA)) p050

    [9]

    Jackson S W, Marshall R 2017 J. Spacecr. Rockets 55 632

    [10]

    胡展 2021 硕士学位论文 (西安: 西北工业大学)

    Hu Z 2021 M. S. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [11]

    Nishiyama K, Hosoda S, Tsukizaki R, Kuninaka H 2020 Acta Astronaut. 166 69Google Scholar

    [12]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Sacramento, California: American Institute of Aeronautics and Astronautics) p4318

    [13]

    Morishita T, Tsukizaki R, Morita S, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronaut. 165 25Google Scholar

    [14]

    Fu Y, Yang J, Jin Y, Xia X, Meng H 2019 Acta Astronaut. 164 387Google Scholar

    [15]

    Fu Y, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [16]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang M J 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [17]

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 12 1478 (in Chinese) [孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 12 1478]

    [18]

    Yang J, Fu Y, Liu X, Meng H, Jin Y 2018 Plasma Sci. Technol. 20 085402Google Scholar

    [19]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31Google Scholar

    [20]

    Funaki I F I, Kuninaka H K H 2001 Jpn. J. Appl. Phys. 40 2495Google Scholar

    [21]

    Ren L, Wang Y, Ding W, Sun A, Karadag B, Deng Z, Geng J 2022 Rev. Sci. Instrum. 93 034501Google Scholar

  • [1] 付瑜亮, 张思远, 杨谨远, 孙安邦, 王亚楠. 微波离子推力器中磁场发散区电子加热模式研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240017
    [2] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240273
    [3] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, 2023, 72(22): 225202. doi: 10.7498/aps.72.20230785
    [4] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [5] 夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [6] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [7] 李建鹏, 靳伍银, 赵以德. 多模式离子推力器输入参数设计及工作特性研究. 物理学报, 2022, 71(7): 075203. doi: 10.7498/aps.71.20212045
    [8] 李建鹏, 赵以德, 靳伍银, 张兴民, 李娟, 王彦龙. 多模式离子推力器放电室和栅极设计及其性能实验研究. 物理学报, 2022, 71(19): 195203. doi: 10.7498/aps.71.20220720
    [9] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211519
    [10] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [11] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究. 物理学报, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [12] 于博, 张岩, 贺伟国, 杭观荣, 康小录, 赵青. 超声波电喷推力器羽流中和特性研究. 物理学报, 2018, 67(4): 040201. doi: 10.7498/aps.67.20171972
    [13] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [14] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [15] 龙建飞, 张天平, 李娟, 贾艳辉. 离子推力器栅极透过率径向分布特性研究. 物理学报, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [16] 陈茂林, 夏广庆, 徐宗琦, 毛根旺. 栅极热变形对离子推力器工作过程影响分析. 物理学报, 2015, 64(9): 094104. doi: 10.7498/aps.64.094104
    [17] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [18] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [19] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [20] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验. 物理学报, 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
计量
  • 文章访问数:  2170
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-11-25
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回