搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压-电-化学耦合增强策略及机理研究进展

贾艳敏 王晓星 张祺昌 武峥

引用本文:
Citation:

压-电-化学耦合增强策略及机理研究进展

贾艳敏, 王晓星, 张祺昌, 武峥

Research progress in enhancement strategies and mechanisms of piezo-electro-chemical coupling

Jia Yan-Min, Wang Xiao-Xing, Zhang Qi-Chang, Wu Zheng
PDF
HTML
导出引用
  • 压电材料能够收集环境中存在的微小的机械能, 具有将机械信号转换为电信号的强大能力. 利用压电材料的压电效应与电化学氧化还原效应二者的耦合可以实现压-电-化学耦合. 近年来, 压-电-化学耦合在收集清洁能源和处理废水保护环境方面受到国内外研究人员的广泛关注. 本文综述了增强压-电-化学耦合的策略, 从构建异质结、负载贵金属、构筑相界、混合碳或石墨烯和调控缺陷方面出发进行了总结梳理. 从电子的运输和转移、材料相变和氧空位的角度解释不同策略中的物理机理, 并对研究前景进行了展望.
    Piezoelectric materials can harvest tiny mechanical energy existing in the environment, and have strong ability to convert mechanical signals into electrical signals. Piezo-electro-chemical coupling can be realized via combining piezoelectric effect of piezoelectric materials with electrochemical redox effect. In recent years, piezo-electro-chemical coupling has attracted a lot of attention from researchers in harvesting vibration energy to treat dye wastewater. The piezoelectric catalyst material dispersed in solution is deformed by ultrasonic vibrations. Owing to the piezoelectric effect and spontaneous polarization effects, positive and negative charges are generated at both ends of the catalyst, which can further react with dissolved oxygen and hydroxide ions in the solution to generate superoxide and hydroxyl radicals (·${}{\rm{O}}_2^- $ and ·OH) for decomposing organic dyes. However, ordinary piezoelectric catalytic materials are often difficult to meet people's pursuit of efficient treatment of organic dyes. Researchers have conducted a lot of researches on piezo-electro-chemical coupling, mainly focusing on the following two aspects: 1) the modification of piezoelectric catalysts to achieve extended carrier lifetime, accelerate carrier separation and high piezoelectric coefficients, and 2) the combination of piezo-electro-chemical coupling with photocatalysis to suppress photogenerated carrier compounding to obtain high synergistic catalytic performance. In this work, the following five strategies to enhance the piezo-electro-chemical coupling via modifying piezoelectric catalyst materials are introduced. The heterojunction structure is constructed to promote the separation of electron-hole pairs. The precious metal is coated on the surface of the catalyst to accelerate the transport and transfer of electrons. The catalyst composition is regulated and controlled to obtain an increased piezoelectric coefficient at the phase boundary. Carbon or graphene are mixed in the catalyst to accelerate the electron transfer on the surface of piezoelectric material. The number of active sites increases through introducing defects into the catalyst to increase the concentration of carriers. The physical mechanisms of five different strategies are described from the perspectives of electron transport and transfer, phase transition, and oxygen vacancies. In addition, the prospects for piezo-electro-chemical coupling in energy and biomedical applications such as hydrogen production, carbon dioxide reduction, tumor therapy and tooth whitening are presented.
      通信作者: 贾艳敏, jiayanmin@xupt.edu.cn ; 武峥, wuzheng@xpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 22179108)资助的课题.
      Corresponding author: Jia Yan-Min, jiayanmin@xupt.edu.cn ; Wu Zheng, wuzheng@xpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22179108).
    [1]

    Dai X Q, Chen L, Li Z Y, Li X, Wang J F, Hu X, Zhao L H, Jia Y M, Sun S X, Wu Y, He Y M 2021 J. Colloid Interface Sci. 603 220Google Scholar

    [2]

    Zhang W H, Wang X J, Zhang Y C, Bochove B, Mäkilä E, Seppälä J, Xu W Y, Willför S, Xu C L 2020 Sep. Purif. Technol. 242 116523Google Scholar

    [3]

    Oliveira L V, Bennici S, Josien L, Limousy L, Bizeto M A, Camilo F F 2020 Carbohydr. Polym. 230 115621Google Scholar

    [4]

    Wang S S, Wu Z, Chen J, Ma J P, Ying J S, Cui S C, Yu S G, Hu Y M, Zhao J H, Jia Y M 2019 Ceram. Int. 45 11703Google Scholar

    [5]

    Muraro P C L, Mortari S R, Vizzotto B S, Chuy G, Dos Santos C, Brum L F W, da Silva W L 2020 Sci. Rep. 10 1Google Scholar

    [6]

    Roy J S, Dugas G, Morency S, Messaddeq Y 2020 Physica E:Low Dimens. Syst. Nanostruct. 120 114114Google Scholar

    [7]

    Van Tran C, La D D, Hoai P N T, Ninh H D, Hong P N T, Vu T H T, Nadda A K, Nguyen X C, Nguyen D D, Ngo H H 2021 J. Hazard. Mater. 420 126636Google Scholar

    [8]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [9]

    Wu W, Yin X, Dai B Y, Kou J H, Ni Y, Lu C H 2020 Appl. Surf. Sci. 517 146119Google Scholar

    [10]

    Lei H, Zhang H H, Zou Y, Dong X P, Jia Y M, Wang F F 2019 J. Alloys Compd. 809 151840Google Scholar

    [11]

    佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801Google Scholar

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801Google Scholar

    [12]

    Moghaddas S, Elahi B, Javanbakht V, 2020 J. Alloys Compd. 821 153519Google Scholar

    [13]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [14]

    Cha B J, Woo T G, Han S W, Saqlain S, Seo H O, Cho H K, Jee Y K, Kim Y D 2018 Catalysts 8 500Google Scholar

    [15]

    Ni M, Leung M, Leung D, Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401Google Scholar

    [16]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electron. Mater. 47 536Google Scholar

    [17]

    Ma J P, Chen L, Wu Z, Chen J, Jia Y M, Hu Y M 2019 Ceram. Int. 45 11934Google Scholar

    [18]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [19]

    Ma J P, Wu Z, Luo W S, Zheng Y Q, Jia Y M, Wang L, Huang H T 2018 Ceram. Int. 44 21835Google Scholar

    [20]

    李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102Google Scholar

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102Google Scholar

    [21]

    You H L, Ma X X, Wu Z, Fei L F, Chen X Q, Yang J, Liu Y S, Jia Y M, Li H M, Wang F F, Huang H T 2018 Nano Energy 52 351Google Scholar

    [22]

    Wu Y L, Ma Y L, Zheng H Y, Ramakrishna S 2021 Materials & Design 211 110164Google Scholar

    [23]

    Hooper T E, Roscow J I, Mathieson A, Khanbareh H, Goetzee-Barral A J, Bell A J 2021 J. Eur. Ceram. Soc. 41 6115Google Scholar

    [24]

    Hong K S, Xu H F, Konishi H, Li X C 2010 J. Phys. Chem. Lett. 1 997Google Scholar

    [25]

    Feng Z Y, Tan O K, Zhu W G, Jia Y M, Luo H S 2008 Appl. Phys. Lett. 92 142910Google Scholar

    [26]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [27]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem. C 116 13045Google Scholar

    [28]

    孙奇薇, 薛国梁, 周学凡, 罗行, 周科朝, 张斗 2021 中国有色金属学报 31 17Google Scholar

    Sun Q W, Xue G L, Zhou X F, Luo H, Zhou K C, Zhang D 2021 T. Nonferr. Metal. Soc. 31 17Google Scholar

    [29]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying S J, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [30]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907

    [31]

    Tu S C, Guo Y X, Zhang Y H, Hu C, Zhang T R, Ma T Y, Huang H W 2020 Adv. Funct. Mater. 30 2005158Google Scholar

    [32]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. , Int. Ed. 58 7526Google Scholar

    [33]

    Pan L, Sun S C, Chen Y, Wang P H, Wang J Y, Zhang X W, Zou J J, Wang Z L 2020 Adv. Energy Mater. 10 2000214Google Scholar

    [34]

    Wang X D, Rohrer G S, Li H X, 2018 MRS Bull. 43 946Google Scholar

    [35]

    Liang Z, Yan C F, Rtimi S, Bandara J, 2019 Appl. Catal. B-environ. 241 256Google Scholar

    [36]

    Liu W, Wang M L, Xu C X, Chen S F 2012 Chem. Eng. J. 209 386Google Scholar

    [37]

    Yan Y X, Yang H, Yi Z, Xian T, Li R S, Wang X X 2019 Desalin. Water Treat. 170 349Google Scholar

    [38]

    Wang L K, Wang J F, Ye C Y, Wang K Q, Zhao C R, Wu Y, He Y M 2021 Ultrason. Sonochem. 80 105813Google Scholar

    [39]

    Zheng Y Q, Jia Y M, Li H M, Wu Z, Dong X P 2020 J Mater. Sci. 55 14787Google Scholar

    [40]

    Li L, She X J, Yi J J, Pan L, Xia K X, Wei W, Zhu X W, Chen Z G, Xu H, Li H M 2019 Appl. Surf. Sci. 469 933Google Scholar

    [41]

    Xing P X, Zhang W Q, Chen L, Dai X Q, Zhang J L, Zhao L H, He Y M 2020 Sustain. Energy Fuels 4 1112Google Scholar

    [42]

    Jakob M, Levanon H, Kamat P V 2003 Nano Lett. 3 353Google Scholar

    [43]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [44]

    Lin E Z, Wu J, Qin N, Yuan B W, Bao D H 2018 Catal. Sci. Technol. 8 4788Google Scholar

    [45]

    Li Z Y, Zhang Q L, Wang L K, Yang J Y, Wu Y, He Y M 2021 Ultrason. Sonochem. 78 105729Google Scholar

    [46]

    Lin E Z, Kang Z H, Wu J, Huang R, Qin N, Bao D H 2021 Appl. Catal. B 285 119823Google Scholar

    [47]

    Zhao T L, Bokov A A, Wu J, Wang H, Wang C M, Yu Y, Wang C L, Zeng K Y, Ye Z G, Dong, S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [48]

    Zhang A, Liu Z Y, Xie B, Lu J S, Guo K, Ke S M, Shu L L, Fan H Q 2020 Appl. Catal. B 279 119353Google Scholar

    [49]

    Yuan B W, Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2019 Appl. Mater. Today 17 183Google Scholar

    [50]

    Wu J G, Wu T 2020 ACS Appl. Mater. 12 52231Google Scholar

    [51]

    Pham Thi T P, Yan Z, Nick G, Hamideh K, Nguyen Phuc H D, Xuefan Z, Dou Z, Kechao Z, Steve D, Chris B 2020 iScience 23 101095Google Scholar

    [52]

    Kapat K, Shubhra Q T, Zhou M, Leeuwenburgh S 2020 Adv. Funct. Mater. 30 1909045Google Scholar

    [53]

    Dawson J A, Sinclair D C, Harding J H, Freeman C L 2014 Chem. Mater. 26 6104

    [54]

    Reaney I, Colla E, Setter N 1994 Jpn. J. Appl. Phys. 33 3984Google Scholar

    [55]

    Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2021 Mater. Today Energy 21 100732Google Scholar

    [56]

    Chen L, Jia Y M, Zhao J H, Ma J P, Wu Z, Yuan G L, Cui X Z 2021 J. Colloid Interface Sci. 586 758Google Scholar

    [57]

    Li X, Lin H M, Chen X, Niu H, Zhang T, Liu J Y, Qu F Y 2015 New J. Chem. 39 7863Google Scholar

    [58]

    Yao W, Shen C, Lu Y 2013 Compos. Sci. Technol. 87 8Google Scholar

    [59]

    Hou T, Cao F, Li M L, Wang J L, Lv L L 2020 J. Environ. Sci. Eng. 8 84Google Scholar

    [60]

    Kumar M, Singh G, Vaish R 2021 Mater. Adv 2 4093Google Scholar

    [61]

    Bai S L, Sun L X, Sun J H, Han J Y, Zhang K W, Li Q Q, Luo R X, Li D Q, Chen A 2021 J. Colloid Interface Sci. 587 183Google Scholar

    [62]

    Zhao Z C, Wei L Y, Li S, Zhu L F, Su Y P, Liu Y, Bu Y B, Lin Y H, Liu W S, Zhang Z T 2020 J. Mater. Chem. A 8 16238Google Scholar

    [63]

    Prakash J, Prasad U, Alexander R, Bahadur J, Dasgupta K, Kannan A N M 2019 Langmuir 35 14492Google Scholar

    [64]

    Miao Y, Tian W R, Han J, Li N J, Chen D Y, Xu Q F, Lu J M 2022 Nano Energy 100 107473Google Scholar

    [65]

    Zhou X F, Shen B, Zhai J W, Hedin N 2021 Adv. Funct. Mater. 31 2009594Google Scholar

    [66]

    Guan J F, Jia Y M, Chang T, Ruan L J, Xu T S, Zhang Z, Yuan G L, Wu Z, Zhu G Q 2022 Sep. Purif. Technol. 286 120450Google Scholar

    [67]

    Ji M, Kim J H, Ryu C H, Lee Y I 2022 Nano Energy 95 106993Google Scholar

    [68]

    Fu C, Wu T, Sun G W, Yin G F, Wang C, Ran G X, Song Q J 2023 Appl. Catal. B 323 122196Google Scholar

    [69]

    Khanbabaee B, Mehner E, Richter C, Hanzig J, Zschornak M, Pietsch U, St¨ocker H, Leisegang T, Meyer D C, Gorfman S 2016 Appl. Phys. Lett. 109 222901Google Scholar

    [70]

    Kang Z H, Lin E Z, Qin N, Wu J, Yuan B W, Bao D H 2021 Environ. Sci. :Nano 8 1376Google Scholar

    [71]

    Zhang D F, Su C H, Li H, Pu X P, Geng Y L 2020 J. Phys. Chem. Solids 139 109326Google Scholar

    [72]

    Zhao Q, Xiao H Y, Geng H F, Zheng Z P, Wang J S, Wang F F, Guo Y P 2021 Nano Energy 85 106028Google Scholar

    [73]

    Sun X X, Li R C, Yang Z W, Zhang N, Wu C, Li J H, Chen Y L, Chen Q, Zhang J, Yan H J, Lv X, Wu J G 2022 Appl. Catal. B 313 121471Google Scholar

    [74]

    Li J H, Wei X W, Sun X X, Li R C, Wu C, Liao J Y, Zhang T, Wu J G 2022 ACS Appl. Mater. Inter. 14 46765Google Scholar

    [75]

    Liu Z, Wen X R, Wang Y, Jia Y M, Wang F F, Yuan G L, Wang Y J 2022 Adv. Mater. Technol. 7 2101484Google Scholar

    [76]

    Ruan L J, Jia Y M, Guan J F, Xue B, Huang S H, Wang Z H, Fu Y H, Wu Z 2022 J. Clean. Prod. 345 131060Google Scholar

    [77]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [78]

    Chen S, Zhu P, Mao L J, Wu W C, Lin H, Xu D L, Lu X Y, Shi J L 2023 Adv. Mater. 2208256

    [79]

    Wang Y, Wen X R, Jia Y M, Huang M, Wang F F, Zhang X H, Bai Y Y, Yuan G L, Wang Y J 2020 Nat. Commun. 11 1328Google Scholar

  • 图 1  增强压-电-化学耦合5种策略, 异质结、贵金属负载、相界、缺陷、混合碳或石墨烯

    Fig. 1.  Five strategies to enhance piezo-electro-chemical coupling, including heterojunction, coating precious metal, phase boundary, defects, mixing carbon or graphene.

    图 2  BTO/CN异质结压-电-化学耦合的机理图[39]

    Fig. 2.  Mechanism diagram for the piezo-electro-chemical coupling of BTO/CN heterostructures [39].

    图 3  异质结材料不同含量助剂对染料的降解率的影响 (a) CoOx/BiFeO3异质结[38]; (b) BTO/CN异质结[39]

    Fig. 3.  Effect of different content of cocatalyst in heterojunction materials on dye decomposition ratio: (a) CoOx/BiFeO3 heterostructure [38]; (b) BTO/CN heterostructure [39].

    图 4  Ag负载的BTO压-电-化学耦合的机理图[44]

    Fig. 4.  Mechanism diagram for the piezo-electro-chemical coupling of Ag-coated BTO [44].

    图 5  不同Ag含量的BTO-Ag降解RhB染料的反应速率常数k值对比[44]

    Fig. 5.  Comparison of reaction rate constant k of RhB dye decomposition by BTO-Ag with different Ag content [44].

    图 6  通过调控组分, 构建两相共存区[48]

    Fig. 6.  Schematic diagram of constructing two-phase coexistence zone through regulating components [48].

    图 7  不同Sr含量的Ba1–xSrxTiO3 降解MO染料 [55]

    Fig. 7.  Decomposition of MO dye by Ba1–xSrxTiO3 with different Sr content[55].

    图 8  不同C含量对BaTiO3降解RhB染料的影响[56]

    Fig. 8.  Effects of RhB dye decomposition by BaTiO3 with different C content [56].

    图 9  BaTiO3/C的压-电-化学耦合示意图[56]

    Fig. 9.  Mechanism diagram for the piezo-electro-chemical coupling of BaTiO3/C [56].

    图 10  Graphene/BiVO4的压-电-化学耦合示意图[60]

    Fig. 10.  Mechanism diagram for the piezo-electro-chemical coupling of graphene/BiVO4[60].

    图 11  CNC 在热处理前后对RhB染料的降解率[66]

    Fig. 11.  Decomposition ratio of RhB dye by CNC before and after heat treatment[66]

    表 1  不同策略对有机染料降解结果汇总

    Table 1.  Summary of decomposition results of organic dyes via different strategies.

    策略复合材料助剂增强前的降解率D
    或反应速率常数k
    增强后的降解率D
    或反应速率常数k
    构建异质结CoOx/BiFeO3CoO(光沉积时间为3 h)D = 50.76%D = 81.2% [38]
    BaTiO3/g-C3N4g-C3N4(质量分数为15%)D = 57%D = 82% [39]
    负载贵金属BaTiO3-AgAg(质量分数为2.09%)D = 15%D = 84% [44]
    Ag/PbBiO2IAg(质量分数为0.2%)k = 0.0024 min–1 k = 0.0165 min–1[45]
    构筑相界(1–x)Na0.5K0.5NbO3-xLiNbO3Li (x = 0.006)D = 53%D = 91% [48]
    (1–x)(Pb0.9625Sm0.025)
    (Mg1/3Nb2/3)O3-xPbTiO3
    PbTiO3(x = 0.29)k = 0.0453 min–1[49]
    Ba1–xSrxTiO3Sr(x = 0.20)k = 0.005 min–1 k = 0.025 min–1[51]
    0.96(K0.48Na0.52)Nb0.955Sb0.045O3-0.04(Bi0.5Na0.5)ZrO30.04(Bi0.5Na0.5)ZrO3k = 0.043 min–1 k = 0.091 min–1[73]
    0.82 Ba(Ti0.89Sn0.11)O3-0.18(Ba0.7Ca0.3)TiO30.18(Ba0.7Ca0.3)TiO3k = 0.0706 min–1k = 0.0094 min–1[74]
    混合碳BaTiO3/CC(质量分数为2%)D = 48.4%D = 75.5% [56]
    混合石墨烯BaTiO3@GrapheneGraphene(质量比为2∶1)k = 0.002 min–1 k = 0.028 min–1[59]
    Graphene/BiVO4Graphene(质量分数为2%)D = 19%D = 81% [60]
    调控缺陷BaTiO3–xk = 0.0084 min–1 k = 0.0101 min–1 [67]
    C3N5–x-OD = 73.5%D = 99% [68]
    CNCD = 34.58%D = 96.65% [66]
    下载: 导出CSV
  • [1]

    Dai X Q, Chen L, Li Z Y, Li X, Wang J F, Hu X, Zhao L H, Jia Y M, Sun S X, Wu Y, He Y M 2021 J. Colloid Interface Sci. 603 220Google Scholar

    [2]

    Zhang W H, Wang X J, Zhang Y C, Bochove B, Mäkilä E, Seppälä J, Xu W Y, Willför S, Xu C L 2020 Sep. Purif. Technol. 242 116523Google Scholar

    [3]

    Oliveira L V, Bennici S, Josien L, Limousy L, Bizeto M A, Camilo F F 2020 Carbohydr. Polym. 230 115621Google Scholar

    [4]

    Wang S S, Wu Z, Chen J, Ma J P, Ying J S, Cui S C, Yu S G, Hu Y M, Zhao J H, Jia Y M 2019 Ceram. Int. 45 11703Google Scholar

    [5]

    Muraro P C L, Mortari S R, Vizzotto B S, Chuy G, Dos Santos C, Brum L F W, da Silva W L 2020 Sci. Rep. 10 1Google Scholar

    [6]

    Roy J S, Dugas G, Morency S, Messaddeq Y 2020 Physica E:Low Dimens. Syst. Nanostruct. 120 114114Google Scholar

    [7]

    Van Tran C, La D D, Hoai P N T, Ninh H D, Hong P N T, Vu T H T, Nadda A K, Nguyen X C, Nguyen D D, Ngo H H 2021 J. Hazard. Mater. 420 126636Google Scholar

    [8]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [9]

    Wu W, Yin X, Dai B Y, Kou J H, Ni Y, Lu C H 2020 Appl. Surf. Sci. 517 146119Google Scholar

    [10]

    Lei H, Zhang H H, Zou Y, Dong X P, Jia Y M, Wang F F 2019 J. Alloys Compd. 809 151840Google Scholar

    [11]

    佟建波, 黄茜, 张晓丹, 张存善, 赵颖 2012 物理学报 61 047801Google Scholar

    Tong J B, Huang Q, Zhang X D, Zhang C S, Zhao Y 2012 Acta Phys. Sin. 61 047801Google Scholar

    [12]

    Moghaddas S, Elahi B, Javanbakht V, 2020 J. Alloys Compd. 821 153519Google Scholar

    [13]

    赵娟, 胡慧芳, 曾亚萍, 程彩萍 2013 物理学报 62 158104Google Scholar

    Zhao J, Hu H F, Zeng Y P, Cheng C P 2013 Acta Phys. Sin. 62 158104Google Scholar

    [14]

    Cha B J, Woo T G, Han S W, Saqlain S, Seo H O, Cho H K, Jee Y K, Kim Y D 2018 Catalysts 8 500Google Scholar

    [15]

    Ni M, Leung M, Leung D, Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401Google Scholar

    [16]

    Xu X L, Xiao L B, Jia Y M, Hong Y T, Ma J P, Wu Z 2018 J. Electron. Mater. 47 536Google Scholar

    [17]

    Ma J P, Chen L, Wu Z, Chen J, Jia Y M, Hu Y M 2019 Ceram. Int. 45 11934Google Scholar

    [18]

    Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695Google Scholar

    [19]

    Ma J P, Wu Z, Luo W S, Zheng Y Q, Jia Y M, Wang L, Huang H T 2018 Ceram. Int. 44 21835Google Scholar

    [20]

    李宗宝, 王霞, 樊帅伟 2014 物理学报 63 157102Google Scholar

    Li Z B, Wang X, Fan S W 2014 Acta Phys. Sin. 63 157102Google Scholar

    [21]

    You H L, Ma X X, Wu Z, Fei L F, Chen X Q, Yang J, Liu Y S, Jia Y M, Li H M, Wang F F, Huang H T 2018 Nano Energy 52 351Google Scholar

    [22]

    Wu Y L, Ma Y L, Zheng H Y, Ramakrishna S 2021 Materials & Design 211 110164Google Scholar

    [23]

    Hooper T E, Roscow J I, Mathieson A, Khanbareh H, Goetzee-Barral A J, Bell A J 2021 J. Eur. Ceram. Soc. 41 6115Google Scholar

    [24]

    Hong K S, Xu H F, Konishi H, Li X C 2010 J. Phys. Chem. Lett. 1 997Google Scholar

    [25]

    Feng Z Y, Tan O K, Zhu W G, Jia Y M, Luo H S 2008 Appl. Phys. Lett. 92 142910Google Scholar

    [26]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [27]

    Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem. C 116 13045Google Scholar

    [28]

    孙奇薇, 薛国梁, 周学凡, 罗行, 周科朝, 张斗 2021 中国有色金属学报 31 17Google Scholar

    Sun Q W, Xue G L, Zhou X F, Luo H, Zhou K C, Zhang D 2021 T. Nonferr. Metal. Soc. 31 17Google Scholar

    [29]

    洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏 2018 物理学报 67 107702Google Scholar

    Hong Y T, Ma J P, Wu Z, Ying S J, You H L, Jia Y M 2018 Acta Phys. Sin. 67 107702Google Scholar

    [30]

    Fu D, Endo M, Taniguchi H, Taniyama T, Itoh M 2007 Appl. Phys. Lett. 90 252907

    [31]

    Tu S C, Guo Y X, Zhang Y H, Hu C, Zhang T R, Ma T Y, Huang H W 2020 Adv. Funct. Mater. 30 2005158Google Scholar

    [32]

    Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. , Int. Ed. 58 7526Google Scholar

    [33]

    Pan L, Sun S C, Chen Y, Wang P H, Wang J Y, Zhang X W, Zou J J, Wang Z L 2020 Adv. Energy Mater. 10 2000214Google Scholar

    [34]

    Wang X D, Rohrer G S, Li H X, 2018 MRS Bull. 43 946Google Scholar

    [35]

    Liang Z, Yan C F, Rtimi S, Bandara J, 2019 Appl. Catal. B-environ. 241 256Google Scholar

    [36]

    Liu W, Wang M L, Xu C X, Chen S F 2012 Chem. Eng. J. 209 386Google Scholar

    [37]

    Yan Y X, Yang H, Yi Z, Xian T, Li R S, Wang X X 2019 Desalin. Water Treat. 170 349Google Scholar

    [38]

    Wang L K, Wang J F, Ye C Y, Wang K Q, Zhao C R, Wu Y, He Y M 2021 Ultrason. Sonochem. 80 105813Google Scholar

    [39]

    Zheng Y Q, Jia Y M, Li H M, Wu Z, Dong X P 2020 J Mater. Sci. 55 14787Google Scholar

    [40]

    Li L, She X J, Yi J J, Pan L, Xia K X, Wei W, Zhu X W, Chen Z G, Xu H, Li H M 2019 Appl. Surf. Sci. 469 933Google Scholar

    [41]

    Xing P X, Zhang W Q, Chen L, Dai X Q, Zhang J L, Zhao L H, He Y M 2020 Sustain. Energy Fuels 4 1112Google Scholar

    [42]

    Jakob M, Levanon H, Kamat P V 2003 Nano Lett. 3 353Google Scholar

    [43]

    Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479Google Scholar

    [44]

    Lin E Z, Wu J, Qin N, Yuan B W, Bao D H 2018 Catal. Sci. Technol. 8 4788Google Scholar

    [45]

    Li Z Y, Zhang Q L, Wang L K, Yang J Y, Wu Y, He Y M 2021 Ultrason. Sonochem. 78 105729Google Scholar

    [46]

    Lin E Z, Kang Z H, Wu J, Huang R, Qin N, Bao D H 2021 Appl. Catal. B 285 119823Google Scholar

    [47]

    Zhao T L, Bokov A A, Wu J, Wang H, Wang C M, Yu Y, Wang C L, Zeng K Y, Ye Z G, Dong, S X 2019 Adv. Funct. Mater. 29 1807920Google Scholar

    [48]

    Zhang A, Liu Z Y, Xie B, Lu J S, Guo K, Ke S M, Shu L L, Fan H Q 2020 Appl. Catal. B 279 119353Google Scholar

    [49]

    Yuan B W, Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2019 Appl. Mater. Today 17 183Google Scholar

    [50]

    Wu J G, Wu T 2020 ACS Appl. Mater. 12 52231Google Scholar

    [51]

    Pham Thi T P, Yan Z, Nick G, Hamideh K, Nguyen Phuc H D, Xuefan Z, Dou Z, Kechao Z, Steve D, Chris B 2020 iScience 23 101095Google Scholar

    [52]

    Kapat K, Shubhra Q T, Zhou M, Leeuwenburgh S 2020 Adv. Funct. Mater. 30 1909045Google Scholar

    [53]

    Dawson J A, Sinclair D C, Harding J H, Freeman C L 2014 Chem. Mater. 26 6104

    [54]

    Reaney I, Colla E, Setter N 1994 Jpn. J. Appl. Phys. 33 3984Google Scholar

    [55]

    Wu J, Qin N, Lin E Z, Kang Z H, Bao D H 2021 Mater. Today Energy 21 100732Google Scholar

    [56]

    Chen L, Jia Y M, Zhao J H, Ma J P, Wu Z, Yuan G L, Cui X Z 2021 J. Colloid Interface Sci. 586 758Google Scholar

    [57]

    Li X, Lin H M, Chen X, Niu H, Zhang T, Liu J Y, Qu F Y 2015 New J. Chem. 39 7863Google Scholar

    [58]

    Yao W, Shen C, Lu Y 2013 Compos. Sci. Technol. 87 8Google Scholar

    [59]

    Hou T, Cao F, Li M L, Wang J L, Lv L L 2020 J. Environ. Sci. Eng. 8 84Google Scholar

    [60]

    Kumar M, Singh G, Vaish R 2021 Mater. Adv 2 4093Google Scholar

    [61]

    Bai S L, Sun L X, Sun J H, Han J Y, Zhang K W, Li Q Q, Luo R X, Li D Q, Chen A 2021 J. Colloid Interface Sci. 587 183Google Scholar

    [62]

    Zhao Z C, Wei L Y, Li S, Zhu L F, Su Y P, Liu Y, Bu Y B, Lin Y H, Liu W S, Zhang Z T 2020 J. Mater. Chem. A 8 16238Google Scholar

    [63]

    Prakash J, Prasad U, Alexander R, Bahadur J, Dasgupta K, Kannan A N M 2019 Langmuir 35 14492Google Scholar

    [64]

    Miao Y, Tian W R, Han J, Li N J, Chen D Y, Xu Q F, Lu J M 2022 Nano Energy 100 107473Google Scholar

    [65]

    Zhou X F, Shen B, Zhai J W, Hedin N 2021 Adv. Funct. Mater. 31 2009594Google Scholar

    [66]

    Guan J F, Jia Y M, Chang T, Ruan L J, Xu T S, Zhang Z, Yuan G L, Wu Z, Zhu G Q 2022 Sep. Purif. Technol. 286 120450Google Scholar

    [67]

    Ji M, Kim J H, Ryu C H, Lee Y I 2022 Nano Energy 95 106993Google Scholar

    [68]

    Fu C, Wu T, Sun G W, Yin G F, Wang C, Ran G X, Song Q J 2023 Appl. Catal. B 323 122196Google Scholar

    [69]

    Khanbabaee B, Mehner E, Richter C, Hanzig J, Zschornak M, Pietsch U, St¨ocker H, Leisegang T, Meyer D C, Gorfman S 2016 Appl. Phys. Lett. 109 222901Google Scholar

    [70]

    Kang Z H, Lin E Z, Qin N, Wu J, Yuan B W, Bao D H 2021 Environ. Sci. :Nano 8 1376Google Scholar

    [71]

    Zhang D F, Su C H, Li H, Pu X P, Geng Y L 2020 J. Phys. Chem. Solids 139 109326Google Scholar

    [72]

    Zhao Q, Xiao H Y, Geng H F, Zheng Z P, Wang J S, Wang F F, Guo Y P 2021 Nano Energy 85 106028Google Scholar

    [73]

    Sun X X, Li R C, Yang Z W, Zhang N, Wu C, Li J H, Chen Y L, Chen Q, Zhang J, Yan H J, Lv X, Wu J G 2022 Appl. Catal. B 313 121471Google Scholar

    [74]

    Li J H, Wei X W, Sun X X, Li R C, Wu C, Liao J Y, Zhang T, Wu J G 2022 ACS Appl. Mater. Inter. 14 46765Google Scholar

    [75]

    Liu Z, Wen X R, Wang Y, Jia Y M, Wang F F, Yuan G L, Wang Y J 2022 Adv. Mater. Technol. 7 2101484Google Scholar

    [76]

    Ruan L J, Jia Y M, Guan J F, Xue B, Huang S H, Wang Z H, Fu Y H, Wu Z 2022 J. Clean. Prod. 345 131060Google Scholar

    [77]

    Wang S Y, Gao Y Y, Miao S, Liu T F, Mu L C, Li R G, Li R G, Fan F T, Li C 2017 J. Am. Chem. Soc. 139 11771Google Scholar

    [78]

    Chen S, Zhu P, Mao L J, Wu W C, Lin H, Xu D L, Lu X Y, Shi J L 2023 Adv. Mater. 2208256

    [79]

    Wang Y, Wen X R, Jia Y M, Huang M, Wang F F, Zhang X H, Bai Y Y, Yuan G L, Wang Y J 2020 Nat. Commun. 11 1328Google Scholar

  • [1] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [2] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [3] 姚宽明, 姚靖仪, 海照, 李登峰, 解兆谦, 于欣格. 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件. 物理学报, 2020, 69(17): 178701. doi: 10.7498/aps.69.20200664
    [4] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [5] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [6] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [7] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [8] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [9] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, 2018, 67(20): 207701. doi: 10.7498/aps.67.20181091
    [10] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [11] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [12] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [13] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [14] 汤立国. 压电材料全矩阵材料常数超声谐振谱反演技术中的变温模式识别. 物理学报, 2017, 66(2): 027703. doi: 10.7498/aps.66.027703
    [15] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [16] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [17] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [18] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [19] 范军峰, 张 宁. Tb1-xDyxFe2-y-Fe掺杂BaTiO3多层膜中的磁电耦合. 物理学报, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  6942
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-02-25
  • 上网日期:  2023-03-03
  • 刊出日期:  2023-04-20

/

返回文章
返回