搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RCA阵列三维超快超声血流成像方法仿真研究

付亚鹏 孙乾东 李博艺 他得安 许凯亮

引用本文:
Citation:

基于RCA阵列三维超快超声血流成像方法仿真研究

付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮

Three-dimensional ultrafast ultrasound imaging of blood flow using row-column addressing array: A simulation study

Fu Ya-Peng, Sun Qian-Dong, Li Bo-Yi, Ta De-An, Xu Kai-Liang
PDF
HTML
导出引用
  • 三维超快成像是超声技术发展的重要方向. 基于二维全采样阵列的传统三维成像方法需要较多成像阵元和采样通道, 其紧密的阵元排列设计也客观上限制了阵列孔径大小和成像分辨率. 行列寻址(row-column addressing, RCA)探头以行列检索的方式将通道数自N$ \times $N减少为N$ + $N, 从而极大地降低了阵列的硬件实现成本. 本文仿真了中心频率为6$ {\rm{M}}{\rm{H}}{\rm{z}} $的128行+128列的RCA阵列, 结合多角度平面波正交复合成像方法, 通过延时叠加(delay and sum, DAS)波束合成、基于特征值分解(singular value decomposition, SVD)的杂波滤除和自相关多普勒速度求解算法, 实现了血流仿体的多普勒成像, 并分析了不同复合角度序列对成像效果的影响. 定量分析表明, 当角度数从5个增至33个时, –6 dB分辨率从0.986 mm提升至0.493 mm; 当复合角度为17个时, 功率多普勒图像的SNR可达30 dB, 彩色多普勒沿直径方向的速度分布和真实值的平均误差约为26.0 %. 以上结果表明, 基于RCA阵列的三维成像技术能够获得三维B-mode、功率多普勒和彩色多普勒图像, 增大复合平面波角度数和角度范围可显著提高成像质量. 本研究对于三维超快超声多普勒成像技术发展具有借鉴意义, 相关方法有应用于血流血管成像, 并进一步实现基于神经-血管耦合的组织功能监测与成像的潜力和前景.
    Three-dimensional (3D) ultrafast imaging is important for ultrasound technology development. The traditional 3D imaging method based on fully sampled two-dimensional (2D) matrix often requires a large number of electronic channels with high density which limits the aperture size and imaging resolution in application. Recently developed row-column addressing (RCA) matrix effectively reduces the number of electronic channels from N × N to N + N by addressing the row and column elements. The beamforming strategy designed for 3D ultrasound imaging was based on the coherent compounding of orthogonal plane waves (OPW). Such a multi-angle OPW compounding strategy achieves virtual transmit focusing in both directions by transmitting a set of plane waves in one direction and receiving along the orthogonal direction, which finally leads to an isotropic point spread function (PSF). In this paper, multi-angle OPW method was investigated for 3D blood flow imaging using an RCA matrix with 128 rows and 128 columns, centered at 6 MHz. The delay and sum (DAS) beamforming was developed for coherent OPW compounding, and the singular value decomposition (SVD) filtering method was used for separating the dynamic blood flow signals from the static tissue signals and low-amplitude noise. The Doppler velocity was computed by the autocorrelation method, and finally the 3D power Doppler and color Doppler imaging of the blood flow were realized. To evaluate the imaging quality and investigate the effect of different OPW tilting angles, quantitative analysis was carried out using multiple parameters, including –6 dB resolution measurements of the PSF, SNR of the power Doppler images and velocity distribution of the color Doppler. The –6 dB resolution is improved from 0.986 mm to 0.493 mm with the number of angles increasing from 5 to 33. With 17 plane wave angles, the SNR of the power Doppler image reaches 30 dB, and the average deviation between the velocity distribution along the diameter of the blood flow phantom and the actual value is about 26.0%. In conclusion, results show that the ultrafast 3D imaging method based on RCA matrix can obtain 3D B-mode, power Doppler and color Doppler images. Increasing the number of tilting angles and enlarging the angle range can significantly improve the imaging quality. The proposed method can be helpful for developing 3D ultrafast ultrasound Doppler imaging and functional ultrasound imaging based on neuro-vascular coupling.
      通信作者: 许凯亮, xukl@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974081, 12274093)和上海市青年科技启明星计划(批准号: 20QC1400200)资助的课题.
      Corresponding author: Xu Kai-Liang, xukl@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974081, 12274093), and the Shanghai Rising Star Program, China (Grant No. 20QC1400200).
    [1]

    Fenster A, Downey D B 1996 IEEE Eng. Med. Biol. 15 41Google Scholar

    [2]

    Huang Q, Zeng Z 2017 BioMed Res. Int. 2017 1Google Scholar

    [3]

    许凯亮, 付亚鹏, 闫少渊, 隋怡晖, 他得安, 王威琪 2023 声学学报 48 173Google Scholar

    Xu K L, Fu Y P, Yan S Y, Sui Y H, Ta D A, Wang W Q 2023 Acta Acustica 48 173Google Scholar

    [4]

    Brinkley J F, Moritz W E, Baker D W 1978 Ultrasound Med. Biol. 4 317Google Scholar

    [5]

    Baranger J, Demene C, Frerot A, Faure F, Delanoë C, Serroune H, Houdouin A, Mairesse J, Biran V, Baud O, Tanter M 2021 Nat. Commun. 12 1Google Scholar

    [6]

    Logan A S, Wong L L P, Chen A I H, Yeow J T W 2011 IEEE T. Ultrason. Ferr. 58 1266Google Scholar

    [7]

    Von Ramm O T, Smith S W 1990 J. Digit. Imaging 3 261Google Scholar

    [8]

    Von Ramm O T, Smith S W, Pavy H G 1991 IEEE T. Ultrason. Ferr. 38 109Google Scholar

    [9]

    Li P C, Huang J J 2002 IEEE T. Ultrason. Ferr. 49 1191Google Scholar

    [10]

    Eames M, Zhou S, Hossack J 2005 2005 IEEE International Ultrasonics Symposium(IUS) Rotterdam, The Netherlands, September 18–21, 2005 p2243

    [11]

    Provost J, Papadacci C, Demene C, Gennisson J L, Tanter M, Pernot M 2015 IEEE T. Ultrason. Ferr. 62 1467Google Scholar

    [12]

    Papadacci C, Bunting E A, Konofagou E E 2017 IEEE Trans. Med. Imaging 36 357Google Scholar

    [13]

    Heiles B, Correia M, Hingot V, Pernot M, Provost J, Tanter M, Couture O 2019 IEEE Trans. Med. Imaging 38 2005Google Scholar

    [14]

    Hara K, Sakano J, Mori M, Tamano S, Sinomura R, Yamazaki K Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs Santa Barbara CA, USA, May 23–26, 2005 p359

    [15]

    Matrone G, Savoia A S, Terenzi M, Caliano G, Quaglia F, Magenes G 2014 IEEE T. Ultrason. Ferr. 61 792Google Scholar

    [16]

    Ramalli A, Boni E, Savoia A S, Tortoli P 2015 IEEE T. Ultrason. Ferr. 62 1580Google Scholar

    [17]

    Diarra B, Robini M, Tortoli P, Cachard C, Liebgott H 2013 IEEE T. Biomed. Eng. 60 3093Google Scholar

    [18]

    Morton C E, Lockwood G R 2003 IEEE International Symposium on Ultrasonics(IUS) Honolulu, Hawaii, October 5–8, 2003 p968

    [19]

    Seo C H, Yen J T 2009 IEEE T. Ultrason. Ferr. 56 837Google Scholar

    [20]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjåstad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [21]

    Flesch M, Pernot M, Provost J, Ferin G, Nguyen-Dinh A, Tanter M, Deffieux T 2017 Phys. Med. Bio. 62 4571Google Scholar

    [22]

    Sauvage J, Porée J, Rabut C, Férin G, Flesch M, Rosinski B, Nguyen-Dinh A, Tanter M, Pernot M, Deffieux T 2020 IEEE T. Med. Imaging 39 1884Google Scholar

    [23]

    Deffieux T, Demené C, Tanter M 2021 Neuroscience 474 110Google Scholar

    [24]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE T. Ultrason. Ferr. 56 489Google Scholar

    [25]

    Rasmussen M F, Christiansen T L, Thomsen E V, Jensen J A 2015 IEEE T. Ultrason. Ferr. 62 947Google Scholar

    [26]

    Xu K, Minonzio J G, Ta D, Hu B, Wang W, Laugier P 2016 I IEEE T. Ultrason. Ferr. 63 1514Google Scholar

    [27]

    Jensen J A 1996 Proceedings of the 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical & Biological Engineering & Computing Tempere, Finland, June 9–13, 1996 p351

    [28]

    Jensen J A, Svendsen N B 1992 IEEE T. Ultrason. Ferr. 39 262Google Scholar

    [29]

    Taghavi I, Schou M, Panduro N S, Andersen B G, Tomov B G, Sørensen, C M, Stuart M B, Jensen J A 2022 2022 IEEE International Ultrasonics Symposium (IUS) Venice, Italy, October 10–13, 2022 p1

    [30]

    Alfred C H, Lovstakken L 2010 IEEE T. Ultrason. Ferr. 57 1096Google Scholar

    [31]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 物理学报 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A, Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [32]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 物理学报 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [33]

    Sui Y, Yan S, Yu J, Song J, Ta D, Wang W, Xu K 2022 IEEE T. Ultrason. Ferr. 69 2425Google Scholar

    [34]

    Xu K, Guo X, Sui Y, Hingot V, Couture O, Ta D, Wang W 2021 IEEE International Ultrasonics Symposium (IUS) Xi'an, China, September 11–16, 2021 p1

  • 图 1  正交平面波复合 (a)行发射列接收; (b)列发射行接收; (c)各向同性的PSF图像

    Fig. 1.  OPW compounding: (a) Row transmission and column reception; (b) column transmission and row reception; (c) coherent summation to obtain an isotropic PSF.

    图 2  RCA阵列延时计算, 以行发射列接收为例 (a)发射距离; (b)接收距离

    Fig. 2.  RCA matrix delay computation using row transmission and column reception as an example: (a) Forward distances; (b) back distances.

    图 3  PSF图像($ \Delta \alpha = $1°), 角度数分别为: (a) 5; (b) 17; (c) 33 (1, 2为单次发射得到的PSF; 3为正交复合后的PSF)

    Fig. 3.  PSF results ($ \Delta \alpha = $1°): (a) 5 angles; (b) 17 angles; (c) 33 angles (Images labeled 1 and 2 are the PSFs from single emission; images labeled 3 are the compounded PSFs).

    图 4  $ \Delta \alpha = $0.5°时的PSF图像 (a) 9个角度; (b) 33个角度; (c) 65个角度

    Fig. 4.  PSF results of $ \Delta \alpha = $0.5°: (a) 9 angles; (b)33 angles; (c) 65 angles.

    图 5  角度数为5时, 不同角度范围的PSF图像 (a) [–4°, 4°]; (b) [–8°, 8°]; (c) [–12°, 12°]

    Fig. 5.  PSF results of 5 angles: (a) [–4°, 4°]; (b) [–8°, 8°]; (c) [–12°, 12°].

    图 6  PSF图像的–6 dB分辨率 (a) 图3; (b) 图4; (c) 图5

    Fig. 6.  –6 dB resolution of the PSF: (a) Fig. 3; (b) Fig. 4; (c) Fig. 5.

    图 7  仿体血流成像结果 (a) SVD滤波前的二维B超图像; (b) SVD滤波后的二维B超图像; (c) 滤波后的三维功率多普勒图像; (d) 滤波后的三维彩色多普勒图像

    Fig. 7.  Imaging results of the phantom blood flow: (a) B mode image before the clutter filtering; (b)B mode image after the clutter filtering; (c)3 D power Doppler image; (d)3 D color Doppler image.

    图 8  不同平面波复合角度下的功率多普勒图像及分析 (a) 9个角度; (b) 13个角度; (c) 17个角度; (d) SNR; (e) 沿虚线的功率多普勒能量分布

    Fig. 8.  Power Doppler results with different numbers of steering angles: (a) 9 angles; (b) 13 angles; (c) 17 angles; (d) SNR; (e) power Doppler distribution along the dash line.

    图 9  不同平面波复合角度下的彩色多普勒图像和速度分布情况 (a) 9个角度; (b) 13个角度; (c) 17个角度; (d) 沿虚线1的速度分布; (e) 沿虚线2的速度分布

    Fig. 9.  Color Doppler image results with different numbers of steering angles: (a) 9 angles; (b) 13 angles; (c) 17 angles; (d) velocity distribution along the dash line 1; (e) velocity distribution along the dash line 2.

    表 1  RCA阵列参数设置

    Table 1.  Parameters of the RCA matrix.

    阵元数128+128
    中心频率 f0/MHz6
    声速 c/(m·s–1)1540
    波长 λ/μm256.7
    阵元中心间距/mm0.2
    阵元宽度/mm0.175
    阵列孔径/mm225.6$ \times $25.6
    下载: 导出CSV

    表 2  彩色多普勒图像速度分布的平均误差

    Table 2.  Average error of the velocity distribution of the color Doppler.

    角度数N
    91317
    平均误差1/%48.7340.4825.03
    平均误差2/%43.5549.7026.86
    下载: 导出CSV
  • [1]

    Fenster A, Downey D B 1996 IEEE Eng. Med. Biol. 15 41Google Scholar

    [2]

    Huang Q, Zeng Z 2017 BioMed Res. Int. 2017 1Google Scholar

    [3]

    许凯亮, 付亚鹏, 闫少渊, 隋怡晖, 他得安, 王威琪 2023 声学学报 48 173Google Scholar

    Xu K L, Fu Y P, Yan S Y, Sui Y H, Ta D A, Wang W Q 2023 Acta Acustica 48 173Google Scholar

    [4]

    Brinkley J F, Moritz W E, Baker D W 1978 Ultrasound Med. Biol. 4 317Google Scholar

    [5]

    Baranger J, Demene C, Frerot A, Faure F, Delanoë C, Serroune H, Houdouin A, Mairesse J, Biran V, Baud O, Tanter M 2021 Nat. Commun. 12 1Google Scholar

    [6]

    Logan A S, Wong L L P, Chen A I H, Yeow J T W 2011 IEEE T. Ultrason. Ferr. 58 1266Google Scholar

    [7]

    Von Ramm O T, Smith S W 1990 J. Digit. Imaging 3 261Google Scholar

    [8]

    Von Ramm O T, Smith S W, Pavy H G 1991 IEEE T. Ultrason. Ferr. 38 109Google Scholar

    [9]

    Li P C, Huang J J 2002 IEEE T. Ultrason. Ferr. 49 1191Google Scholar

    [10]

    Eames M, Zhou S, Hossack J 2005 2005 IEEE International Ultrasonics Symposium(IUS) Rotterdam, The Netherlands, September 18–21, 2005 p2243

    [11]

    Provost J, Papadacci C, Demene C, Gennisson J L, Tanter M, Pernot M 2015 IEEE T. Ultrason. Ferr. 62 1467Google Scholar

    [12]

    Papadacci C, Bunting E A, Konofagou E E 2017 IEEE Trans. Med. Imaging 36 357Google Scholar

    [13]

    Heiles B, Correia M, Hingot V, Pernot M, Provost J, Tanter M, Couture O 2019 IEEE Trans. Med. Imaging 38 2005Google Scholar

    [14]

    Hara K, Sakano J, Mori M, Tamano S, Sinomura R, Yamazaki K Proceedings. ISPSD '05. The 17th International Symposium on Power Semiconductor Devices and ICs Santa Barbara CA, USA, May 23–26, 2005 p359

    [15]

    Matrone G, Savoia A S, Terenzi M, Caliano G, Quaglia F, Magenes G 2014 IEEE T. Ultrason. Ferr. 61 792Google Scholar

    [16]

    Ramalli A, Boni E, Savoia A S, Tortoli P 2015 IEEE T. Ultrason. Ferr. 62 1580Google Scholar

    [17]

    Diarra B, Robini M, Tortoli P, Cachard C, Liebgott H 2013 IEEE T. Biomed. Eng. 60 3093Google Scholar

    [18]

    Morton C E, Lockwood G R 2003 IEEE International Symposium on Ultrasonics(IUS) Honolulu, Hawaii, October 5–8, 2003 p968

    [19]

    Seo C H, Yen J T 2009 IEEE T. Ultrason. Ferr. 56 837Google Scholar

    [20]

    Denarie B, Tangen T A, Ekroll I K, Rolim N, Torp H, Bjåstad T, Lovstakken L 2013 IEEE Trans. Med. Imaging 32 1265Google Scholar

    [21]

    Flesch M, Pernot M, Provost J, Ferin G, Nguyen-Dinh A, Tanter M, Deffieux T 2017 Phys. Med. Bio. 62 4571Google Scholar

    [22]

    Sauvage J, Porée J, Rabut C, Férin G, Flesch M, Rosinski B, Nguyen-Dinh A, Tanter M, Pernot M, Deffieux T 2020 IEEE T. Med. Imaging 39 1884Google Scholar

    [23]

    Deffieux T, Demené C, Tanter M 2021 Neuroscience 474 110Google Scholar

    [24]

    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M 2009 IEEE T. Ultrason. Ferr. 56 489Google Scholar

    [25]

    Rasmussen M F, Christiansen T L, Thomsen E V, Jensen J A 2015 IEEE T. Ultrason. Ferr. 62 947Google Scholar

    [26]

    Xu K, Minonzio J G, Ta D, Hu B, Wang W, Laugier P 2016 I IEEE T. Ultrason. Ferr. 63 1514Google Scholar

    [27]

    Jensen J A 1996 Proceedings of the 10th Nordic-Baltic Conference on Biomedical Imaging Published in Medical & Biological Engineering & Computing Tempere, Finland, June 9–13, 1996 p351

    [28]

    Jensen J A, Svendsen N B 1992 IEEE T. Ultrason. Ferr. 39 262Google Scholar

    [29]

    Taghavi I, Schou M, Panduro N S, Andersen B G, Tomov B G, Sørensen, C M, Stuart M B, Jensen J A 2022 2022 IEEE International Ultrasonics Symposium (IUS) Venice, Italy, October 10–13, 2022 p1

    [30]

    Alfred C H, Lovstakken L 2010 IEEE T. Ultrason. Ferr. 57 1096Google Scholar

    [31]

    郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮 2022 物理学报 71 174302Google Scholar

    Yu J J, Guo X Y, Sui Y H, Song J P, Ta D A, Mei Y F, Xu K L 2022 Acta Phys. Sin. 71 174302Google Scholar

    [32]

    臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安 2021 物理学报 70 114304Google Scholar

    Zang J Q, Xu K L, Han Q J, Lu Q Y, Mei Y F, Ta D A 2021 Acta Phys. Sin. 70 114304Google Scholar

    [33]

    Sui Y, Yan S, Yu J, Song J, Ta D, Wang W, Xu K 2022 IEEE T. Ultrason. Ferr. 69 2425Google Scholar

    [34]

    Xu K, Guo X, Sui Y, Hingot V, Couture O, Ta D, Wang W 2021 IEEE International Ultrasonics Symposium (IUS) Xi'an, China, September 11–16, 2021 p1

  • [1] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [2] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [3] 张辉, 朱文发, 范国鹏, 张海燕. 非连续阻抗粘接结构脱粘缺陷的稀布阵列超声成像. 物理学报, 2023, 72(2): 024302. doi: 10.7498/aps.72.20221771
    [4] 张芸芸, 李义方, 石勤振, 许乐修, 戴菲, 邢文宇, 他得安. 基于相位迁移的超声平面波多层皮质骨成像. 物理学报, 2023, 72(15): 154303. doi: 10.7498/aps.72.20230581
    [5] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [6] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [7] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [8] 王康宇, 周昱林, 何丽媛, 卢春尧, 于润, 吴大伟. 多角度复合的超声多普勒矢量血流成像. 物理学报, 2022, 71(10): 104303. doi: 10.7498/aps.71.20211825
    [9] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [10] 臧佳琦, 许凯亮, 韩清见, 陆起涌, 梅永丰, 他得安. 无造影剂增强的超快超声脊髓微血管成像方法. 物理学报, 2021, 70(11): 114304. doi: 10.7498/aps.70.20201878
    [11] 千佳, 党诗沛, 周兴, 但旦, 汪召军, 赵天宇, 梁言生, 姚保利, 雷铭. 基于希尔伯特变换的结构光照明快速三维彩色显微成像方法. 物理学报, 2020, 69(12): 128701. doi: 10.7498/aps.69.20200352
    [12] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [13] 王佳林, 严伟, 张佳, 王璐玮, 杨志刚, 屈军乐. 受激辐射损耗超分辨显微成像系统研究的新进展. 物理学报, 2020, 69(10): 108702. doi: 10.7498/aps.69.20200168
    [14] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [15] 陈鹤, 于斌, 陈丹妮, 李恒, 牛憨笨. 超衍射成像中双螺旋点扩展函数的三维定位精度. 物理学报, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [16] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究. 物理学报, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [17] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究. 物理学报, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] 董慧媛, 刘 楣, 吴宗汉, 汪 静, 王振林. 由介质球构成的三维光子晶体能带结构的平面波研究. 物理学报, 2005, 54(7): 3194-3199. doi: 10.7498/aps.54.3194
    [19] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
    [20] 王养璞, 金其淑. 超离子玻璃中的超声吸收理论. 物理学报, 1988, 37(7): 1083-1088. doi: 10.7498/aps.37.1083
计量
  • 文章访问数:  4959
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-03
  • 修回日期:  2022-12-29
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回