-
本文对环形激光阵列的Talbot效应进行了研究, 利用Gyrator正则变换推导了极坐标下环形激光阵列的Talbot效应和自成像条件, 并进一步分析了其在分数Talbot距离处的成像规律. 通过FDTD Solutions软件对环形激光阵列在分数Talbot距离处的空间分布、相位分布进行模拟, 得到与理论计算相一致的结果. 通过与一维激光阵列分数Talbot效应的空间分布、相位分布情况进行对比分析, 环形激光阵列可有效消除一维激光阵列的Talbot边缘效应, 获得等光强分布的Talbot自再现像, 扩展了Talbot效应在环形激光相干阵列锁相的应用.
-
关键词:
- 环形激光阵列 /
- 分数Talbot效应 /
- 自成像 /
- Gyrator变换 /
- 相干阵列
We propose a ring laser array structure and study the Talbot effect. By comparing with the one-dimensional laser array, the near-field distribution of the identical intensity of the ring laser array without edge effect is obtained, which can be more conducive to improving the capability of the external cavity phase locking of lasers. In this paper, Talbot effect and self imaging condition of ring laser array in polar coordinates are calculated by using Gyrator canonical transformation. The sub-image distribution at the fractional Talbot distance is further analyzed. The optical profile and phase distribution of the ring laser array at the fractional Talbot distance are simulated, which are mutually verified with the theoretical calculation results. At a quarter of the Talbot distance, the number of sub-images is twice that of the emitters. The light intensities of the sub-images are identical, and thedifference in phase between adjacent sub-images is${\pi }/{2}$ . At half of the Talbot distance, the number of sub-images is the same as that of the emitters, while the spatial position of sub-image is shifted by half a cycle along the angular direction. Moreover, the sub-images with twice the number of the emitters are present in three quarters of the Talbot distance. The light intensities of the sub-images are identical and the difference in phase between adjacent sub-images is$- {\pi }/{2}$ . Further, the Talbot images with the same spatial and phase distribution as the emitters are generated along the angular direction at the Talbot distance. The optical profile and phase distribution of one dimensional laser array at the fractional Talbot distance are also simulated by FDTD Solutions for comparison. It is found that the edge effect of one-dimensional laser array leads to the uneven distribution of near-field light intensity, in which the intensity of light spot on the edge of array is significantly lower than that in the center of array. While the Talbot sub-images of ring laser array with identical light intensity are obtained. Therefore, We consider that the ring laser array can effectively eliminate the edge effect. The results are helpful in studying the external cavity phase locking of ring laser arrays and its applications in the field of high brightness coherent laser and quantum measurement.-
Keywords:
- ring laser array /
- fractional Talbot effect /
- self imaging /
- gyrator transformation /
- coherent array
[1] Talbot H F 1836 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 1
[2] Berry M V, Klein S 1996 Int. J. Opt. 43 2139
[3] 吴玲玲, 吴国俊, 仓玉萍, 陈良益 2010 光子学报 39 1723Google Scholar
Wu L L, Wu G J, Cang Y P, Chen L Y 2010 Acta Photon. Sin. 39 1723Google Scholar
[4] Javidi B, Lancis J, Tajahuerce E, Andres P, Martinez-Leon L, Araiza-Esquivel M A 2011 Appl. Opt. 50 96Google Scholar
[5] Chai S J, Fekete J, McDowall P, Coop S, Andersen M F 2018 Phys. Rev. A 97 033616Google Scholar
[6] Qiu T, Xia L, Ma H, Zheng C, Chen L 2016 Opt. Commun. 35 20
[7] Chen H X, Xiong D Z, Wang P J 2010 Chin. Opt. Lett. 8 348Google Scholar
[8] Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S, Pritchard D E 1995 Phys. Rev. A 51 14Google Scholar
[9] Zhang Z Y, Liu X, Zhang D, Sheng J T, Zhang Y Q, Zhang Y P, Xiao M 2018 Phys. Rev. A 97 013603Google Scholar
[10] Wang H, Zhang Z, Lu C, Wang Q 2003 Opt. Commun. 222 69Google Scholar
[11] Wang H S 2009 International Conference on Information Engineering and Computer Science Wuhan, China, December 19–20, 2009 p1
[12] 华建文 1997 中国激光 000 163Google Scholar
Hua J W 1997 Chin. J. Lasers 000 163Google Scholar
[13] Shichijo T, Miyamoto T 2019 Jpn. J. Appl. Phys. 58 SJJC01.1
[14] Sanders S, Waarts R G, Nam D W, Welch D F, Flood K M 1993 Proceedings of LEOS San Jose, CA, USA, November 15–18, 1993 p590
[15] Kandidov V P, Kondrat'ev A V 1997 Quantum Electron. 27 234Google Scholar
[16] Liu L R 1989 Opt. Lett. 14 1312Google Scholar
[17] Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Phys. Rev. A 95 033821Google Scholar
[18] Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Chin. Phys. Lett. 34 084207Google Scholar
[19] 陆丹 2004 硕士学位论文(成都: 四川大学)
Lu D 2004 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)
[20] 严地勇 2003 硕士学位论文 (成都: 四川大学)
Yan D Y 2003 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)
[21] 杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元 2020 物理学报 69 034201Google Scholar
Yang Z N, Yue Y Y, Hong X H, Zhao R Z, Lu R E, Feng X, Xu Y G, Yuan X D, Zhang C, Qin Y Q, Zhu Y Y 2020 Acta Phys. Sin. 69 034201Google Scholar
[22] 孙琼阁, 马金鹏, 杨瑀, 李辰, 刘正君, 刘树田 2014 光学学报 34 0711004Google Scholar
Sun Q G, Ma J P, Yang Y, Li C, Liu Z J, Liu S T 2014 Acta Opt. Sin. 34 0711004Google Scholar
[23] 马金鹏 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Ma J P 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
-
图 3 环形激光阵列Talbot效应 (a)初始光斑空间分布; (b) 1/4 Talbot距离处光斑空间分布; (c) 1/2 Talbot距离处光斑空间分布; (d) 3/4 Talbot距离处光斑空间分布; (e) Talbot距离处光斑空间分布; (f)初始光源相位分布; (g) 1/4 Talbot距离处相位分布; (h) 1/2 Talbot距离处相位分布; (i) 3/4 Talbot距离处相位分布; (j) Talbot距离处相位分布
Fig. 3. The Talbot effect of ring laser array: (a) The initial optical profile; (b) optical profile at 1/4 Talbot distance; (c) optical profile at 1/2 Talbot distance; (d) optical profile at 3/4 Talbot distance; (e) optical profile at Talbot distance; (f) phase distribution of the initial light source; (g) phase distribution at 1/4 Talbot distance; (h) phase distribution at 1/2 Talbot distance; (i) phase distribution at 3/4 Talbot distance; (j) phase distribution at Talbot distance.
图 4 一维阵列Talbot效应 (a)初始光场分布; (b)1/4 Talbot距离处光斑空间分布; (c) 1/2 Talbot距离处光斑空间分布; (d) 3/4 Talbot距离处光斑空间分布; (e) Talbot距离处光斑空间分布; (f)初始光源相位分布; (g) 1/4 Talbot距离处相位分布; (h) 1/2Talbot距离处相位分布; (i) 3/4 Talbot距离处相位分布; (j)Talbot距离处相位分布
Fig. 4. The Talbot effect of one-dimensional array: (a) The initial optical profile; (b) optical profile at 1/4 Talbot distance; (c) optical profile at 1/2 Talbot distance; (d) optical profile at 3/4 Talbot distance; (e) optical profile at Talbot distance; (f) phase distribution of the initial light source; (g) phase distribution at 1/4 Talbot distance; (h) phase distribution at 1/2 Talbot distance; (i) phase distribution at 3/4 Talbot distance; (j) phase distribution at Talbot distance.
-
[1] Talbot H F 1836 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 1
[2] Berry M V, Klein S 1996 Int. J. Opt. 43 2139
[3] 吴玲玲, 吴国俊, 仓玉萍, 陈良益 2010 光子学报 39 1723Google Scholar
Wu L L, Wu G J, Cang Y P, Chen L Y 2010 Acta Photon. Sin. 39 1723Google Scholar
[4] Javidi B, Lancis J, Tajahuerce E, Andres P, Martinez-Leon L, Araiza-Esquivel M A 2011 Appl. Opt. 50 96Google Scholar
[5] Chai S J, Fekete J, McDowall P, Coop S, Andersen M F 2018 Phys. Rev. A 97 033616Google Scholar
[6] Qiu T, Xia L, Ma H, Zheng C, Chen L 2016 Opt. Commun. 35 20
[7] Chen H X, Xiong D Z, Wang P J 2010 Chin. Opt. Lett. 8 348Google Scholar
[8] Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S, Pritchard D E 1995 Phys. Rev. A 51 14Google Scholar
[9] Zhang Z Y, Liu X, Zhang D, Sheng J T, Zhang Y Q, Zhang Y P, Xiao M 2018 Phys. Rev. A 97 013603Google Scholar
[10] Wang H, Zhang Z, Lu C, Wang Q 2003 Opt. Commun. 222 69Google Scholar
[11] Wang H S 2009 International Conference on Information Engineering and Computer Science Wuhan, China, December 19–20, 2009 p1
[12] 华建文 1997 中国激光 000 163Google Scholar
Hua J W 1997 Chin. J. Lasers 000 163Google Scholar
[13] Shichijo T, Miyamoto T 2019 Jpn. J. Appl. Phys. 58 SJJC01.1
[14] Sanders S, Waarts R G, Nam D W, Welch D F, Flood K M 1993 Proceedings of LEOS San Jose, CA, USA, November 15–18, 1993 p590
[15] Kandidov V P, Kondrat'ev A V 1997 Quantum Electron. 27 234Google Scholar
[16] Liu L R 1989 Opt. Lett. 14 1312Google Scholar
[17] Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Phys. Rev. A 95 033821Google Scholar
[18] Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Chin. Phys. Lett. 34 084207Google Scholar
[19] 陆丹 2004 硕士学位论文(成都: 四川大学)
Lu D 2004 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)
[20] 严地勇 2003 硕士学位论文 (成都: 四川大学)
Yan D Y 2003 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)
[21] 杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元 2020 物理学报 69 034201Google Scholar
Yang Z N, Yue Y Y, Hong X H, Zhao R Z, Lu R E, Feng X, Xu Y G, Yuan X D, Zhang C, Qin Y Q, Zhu Y Y 2020 Acta Phys. Sin. 69 034201Google Scholar
[22] 孙琼阁, 马金鹏, 杨瑀, 李辰, 刘正君, 刘树田 2014 光学学报 34 0711004Google Scholar
Sun Q G, Ma J P, Yang Y, Li C, Liu Z J, Liu S T 2014 Acta Opt. Sin. 34 0711004Google Scholar
[23] 马金鹏 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Ma J P 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
计量
- 文章访问数: 3467
- PDF下载量: 48
- 被引次数: 0