搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化

朱祥宁 冯黛丽 冯妍卉 林林 张欣欣

引用本文:
Citation:

木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化

朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣

Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification

Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin
PDF
HTML
导出引用
  • 以相变芯材为核心的复合相变材料的潜热储存技术, 对解决可再生能源间歇性问题有着关键作用. 本研究以天然竹木为原材料, 使用高温碳化方法得到碳化竹木, 并使其分别吸附氧化石墨烯和还原氧化石墨烯, 最终与聚乙二醇(PEG2000)复合形成稳定的复合相变材料. 实验结果表明, 还原氧化石墨烯可以达到很好的包封率、热导率和光热转换效率提升效果. 碳化竹木/还原氧化石墨烯/聚乙二醇三元复合相变材料包封率高达81.11%, 熔化潜热为115.62 J/g, 凝固潜热为104.39 J/g, 热导率大幅提升至1.09 W/(m·K)(纯PEG2000的3.7倍), 光热转换效率大幅提高至88.35% (纯PEG2000的3.1倍).
    Thermal energy storage technology can shift the peak and fill the valley of heat, which lays the foundation for realizing the goal of “emission peak and carbon neutrality”. Among various thermal energy storage techniques, the latent heat storage technology based on composite phase change materials can provide large storage capacity with a small temperature variation, and shows great potential in solving the intermittency issue of renewable energy. As a sustainable and renewable material, natural wood has the advantages of a unique anisotropic three-dimensional structure, perfect natural channel, low price, and rich resources. Therefore, the carbonized wood obtained from high-temperature carbonization of natural wood is an excellent choice as a supporting skeleton of composite phase change materials. On the other hand, polyethylene glycol is widely used in energy storage because of its suitable phase transition temperature (46–65℃), high latent heat (145–175 J/g), and stable performance. In this study, carbonized bamboo is prepared at high temperatures. To improve heat storage, thermal conductivity, and photo-thermal conversion properties, the carbonized bamboo is functionalized by graphene oxide and reduced graphene oxide, respectively. Finally, polyethylene glycol is implanted into modified carbonized bamboo to form shape-stabilized phase change materials. Their microstructures, morphologies, and thermophysical properties are characterized. The experimental results show that graphene oxide and reduced graphene oxide can change the surface polarity of carbonized bamboo, thus reducing the interfacial thermal resistance between the carbonized bamboo skeleton and polyethylene glycol, and improving the encapsulation ratio, thermal conductivity, and photo-thermal conversion efficiency without affecting the crystallization behavior of polyethylene glycol. The encapsulation ratio of carbonized bamboo/reduced graphene oxide/polyethylene glycol ternary phase change material is as high as 81.11% (only 4.67% lower than the theoretical value), its latent heat of melting and solidification are 115.62 J/g and 104.39 J/g, its thermal conductivity is greatly increased to 1.09 W/(m·K) (3.7 times that of pure polyethylene glycol), accompanied by substantial growth in its photo-thermal conversion efficiency, reaching 88.35% (3.1 times that of pure polyethylene glycol). This research develops a biomass-derived porous composite phase change material with high heat storage density, high heat transfer rate, and high photo-thermal conversion ability.
      通信作者: 冯黛丽, dlfeng@ustb.edu.cn ; 冯妍卉, yhfeng@me.ustb.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52176054, 52236006)资助的课题.
      Corresponding author: Feng Dai-Li, dlfeng@ustb.edu.cn ; Feng Yan-Hui, yhfeng@me.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52176054, 52236006).
    [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

  • 图 1   (a) 天然竹木的碳化过程; (b) 碳化竹木吸附氧化石墨烯和还原氧化石墨烯的过程; (c) 碳化骨架和PEG2000复合过程

    Fig. 1.  (a) The carbonization process of natural bamboo wood; (b) the adsorption process of GO and RGO by carbonized wood; (c) the composite process of carbon skeleton and PEG2000.

    图 2  几种材料的横截面SEM图像

    Fig. 2.  SEM images of cross-section.

    图 3  (a) NBW和CBW的孔径分布; (b) CBW的拉曼图谱

    Fig. 3.  (a) Pore size distribution of NBW and CBW; (b) Raman spectra of CBW.

    图 4  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW 和 PEG2000的FT-IR光谱(a)和XRD图谱(b)

    Fig. 4.  (a) FT-IR spectroscopy and (b) XRD patterns of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    图 5  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的TG曲线(a)和DSC曲线(b)

    Fig. 5.  TG curves (a) and DSC curves (b) of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    图 6  (a) NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的热导率; (b) 生物质复合相变材料的包封率和热导率比较

    Fig. 6.  (a) Thermal conductivities of NBW, CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000; (b) comparison of encapsulation ratio and thermal conductivity of biomass composite phase change materials.

    图 7  CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW和PEG-RGOCBW的应力-应变曲线

    Fig. 7.  Stress-strain curves of CBW, GOCBW, RGOCBW, PEG-CBW, PEG-GOCBW, and PEG-RGOCBW.

    图 8  PEG-CBW, PEG-GOCBW, PEG-RGOCBW和PEG2000的温升曲线(a), 光转换效率(b)和红外热成像图片(c)

    Fig. 8.  Temperature rise curve (a), photothermal conversion efficiency (b), and infrared thermal images (c) of PEG-CBW, PEG-GOCBW, PEG-RGOCBW, and PEG2000.

    表 1  NBW和CBW的孔隙参数

    Table 1.  Pore parameters of NBW and CBW.

    样品孔隙率/%平均孔径/nm总孔容/
    (cm3·g–1)
    总孔面积/
    (m2·g–1)
    NBW39.2422.170.4988.91
    CBW79.9546.955.34454.59
    下载: 导出CSV

    表 2  PEG-CBW, PEG-GOCBW, PEG-RGOCBW的相变参数

    Table 2.  Phase change parameters of PEG-CBW, PEG-GOCBW, PEG-RGOCBW.

    样品Tm/TfΔHm/ΔHf$ \gamma $/%
    PEG200052.47/30.86193.00/176.60
    PEG-CBW46.86/36.7644.56/37.1352.66
    PEG-GOCBW50.14/35.0079.49/67.6471.53
    PEG-RGOCBW50.06/37.15115.62/104.3981.11
    下载: 导出CSV
  • [1]

    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, ChenY, Sprenkle V L, Li X 2016 Adv. Mater. 28 1600377

    [2]

    Qian T T, Li J 2018 Energy 142 234Google Scholar

    [3]

    Zhang S, Wu W, Wang S 2017 Energy 130 228Google Scholar

    [4]

    Wang C, Feng L, Li W, Zheng J, Tian W, Li X 2012 Sol. Energy Mater. Sol. Cells 105 21Google Scholar

    [5]

    Yang H, Wang Y, Yu Q, Cao G, Yang R, Ke J, Di X, Liu, F, Zhang W, Wang C 2018 Appl. Energy 212 455Google Scholar

    [6]

    Huang X, Alva G, Liu L, Fang G 2017 Appl. Energy 200 19Google Scholar

    [7]

    Min X, Fang M H, Huang Z H, Liu Y G, Huang Y T, Wen R L, Qian T T, Wu X W 2015 Sci. Rep. 5 12964Google Scholar

    [8]

    Feng L L, Zheng J, Yang H Z, Yan L 2011 Sol. Energy Mater. Sol. Cells 95 644Google Scholar

    [9]

    Qian T T, Li J, Deng Y 2016 Sci. Rep. 6 32392Google Scholar

    [10]

    Karaman S, Karaipekli A, Sar A, Bier A 2011 Sol. Energy Mater. Sol. Cells 95 1647Google Scholar

    [11]

    Qi G Q, Liang C L, Bao R Y, Liu Z Y, Yang W, Xie B H, Yang M B 2014 Sol. Energy Mater. Sol. Cells 123 171Google Scholar

    [12]

    Qian T T, Li J, Min X, Deng Y, Guan W, Ma H 2015 Energy 82 333Google Scholar

    [13]

    Seki, Y, Ince, Seyma, Ezan M A, Turgut A, Erek A 2015 Sol. Energy Mater. Sol. Cells 140 457Google Scholar

    [14]

    Zhang N, Yuan Y P, Wang X, Cao X L, Yang X J, Hu S C 2013 Chem. Eng. J. 231 214Google Scholar

    [15]

    Li B, Liu T, Hu L, Wang Y, Nie S 2013 Chem. Eng. J. 215 819

    [16]

    Zhao Y J, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2018 Energy Build. 158 1049Google Scholar

    [17]

    Zhang X G, Huang Z H, Yin Z Y, Zhang W Y, Huang Y T, Liu Y G, Fang M H, Wu X W, Min X 2017 Energy Build. 154 46Google Scholar

    [18]

    Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K 2014 J. Mater. Chem. A 2 7759Google Scholar

    [19]

    Zhang Y, Song J W, Kierzewski, Iain, Li Y J, Gong Y H 2017 Energy Environ. Sci. 10 538Google Scholar

    [20]

    Zhang Z T, Cao B Y 2022 Sci. China. Phys. Mech. 65 117003Google Scholar

    [21]

    Qiang S, Jing O, Yi Z, Yang H 2017 Appl. Clay Sci. 146 14Google Scholar

    [22]

    Zhang Y, Liu J, Su Z, Lu M, Liu S, Jiang T 2020 Constr. Build. Mater. 238 117717Google Scholar

    [23]

    Zou T, Fu W W, Liang X L, Wang S F, Gao X N, Zhang Z G, Fang Y T, Henrik L, Mark J K 2020 Energy 190 116473Google Scholar

    [24]

    Xie N, Li Z, Gao X, Fang Y, Zhang Z 2020 Int. J. Refrig. 110 178Google Scholar

    [25]

    Yang J, Jia Y L, Bing N C, Wang L L, Xie H Q, Yu W 2019 Appl. Therm. Eng. 163 114412Google Scholar

    [26]

    Zhang H, Wang L, Xi S, Xie H, Yu W 2021 Renew. Energy 175 307Google Scholar

    [27]

    Liu Y, Yang Y, Li S 2016 J. Mater. Chem. A 10 1039

    [28]

    Li Z, Yang W, Jiang Z, He F, Wu J 2017 Appl. Energy 197 354Google Scholar

    [29]

    Ma X C, Liu Y J, Liu H, Zhang L, Xu B, Xiao F 2018 Sol. Energy Mater. Sol. Cells 188 73Google Scholar

    [30]

    Feng D L, Zang Y Y, Li P, Feng Y H, Yan Y Y, Zhang X X 2021 Compos. Sci. Technol. 210 108832Google Scholar

    [31]

    Yu Z P, Feng D L, Feng Y H, Zhang X X 2022 Compos. Part A: Appl. Sci. Manufact. 152 106703Google Scholar

    [32]

    Yuan P, Zhang P, Liang T, Zhai S P 2019 Appl. Surf. Sci. 485 402Google Scholar

    [33]

    Xie B, Li C, Zhang B, Yang L, Chen J 2020 Energy Built Environ. 1 187

    [34]

    Hekimolu G, Sar A, Kar T, Kele S, Saleh T A 2021 J. Energy Storage 35 102288Google Scholar

    [35]

    Wu S, Chen Y, Chen Z, Wang J, Cai M, Gao J 2021 Sci. Rep. 11 822Google Scholar

    [36]

    Zhao Y J, Sun B, Du P P, Min X, Huang Z H, Liu Y G, Wu X W, Fang M H 2019 Mater. Res. Express 6 115515Google Scholar

    [37]

    Chen Y, Cui Z, Ding H, Wan Y, Tang Z, Gao J 2018 Int. J. Mol. Sci. 19 3055Google Scholar

    [38]

    Wan Y C, Chen Y, Cui Z X, Ding H, Gao S F, Han Z, Gao J K 2019 Sci. Rep. 9 11535Google Scholar

    [39]

    Das D, Bordoloi U, Muigai H H, Kalita P 2020 J. Energy Storage 30 101403Google Scholar

    [40]

    Yang H Y, Wang Y, Yu Q, Li G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J 2018 Energy 159 929Google Scholar

    [41]

    Li C, Xie B, He Z, Chen J, Long Y 2019 Renew. Energy 140 862Google Scholar

    [42]

    Zhang W, Zhang X, Zhang X, Yin Z, Liu Y, Fang M, Wu X, Min X, Huang Z 2019 Thermochim. Acta 674 21Google Scholar

    [43]

    Atinafu D G, Dong W, Wang C, Wang G 2018 J. Mater. Chem. A 6 8969Google Scholar

    [44]

    Wen R, Zhang W, Lv Z, Huang Z, Gao W 2018 Mater. Lett. 215 42Google Scholar

    [45]

    Yang Z, Deng Y, Li J 2019 Appl. Therm. Eng. 150 967Google Scholar

  • [1] 杨旭, 李静, 毛宇, 陶可爱, 孙宽, 陈珊珊, 周永利, 郑玉杰. 基于六水氯化钙的单相变材料热二极管的实验研究. 物理学报, 2024, 73(5): 058301. doi: 10.7498/aps.73.20231686
    [2] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [4] 刘英光, 薛新强, 张静文, 任国梁. 基于界面原子混合的材料导热性能. 物理学报, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [5] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [7] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [8] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [9] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [12] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [13] 史娜娜, 赵艳, 冯超, 黄杰, 徐佳宇. 光辐照精确调控金纳米星枝杈长度及其光热性能探究. 物理学报, 2017, 66(8): 086101. doi: 10.7498/aps.66.086101
    [14] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究. 物理学报, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [15] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [16] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [17] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [18] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [19] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [20] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
计量
  • 文章访问数:  2650
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 修回日期:  2023-02-02
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回