-
调节界面热导(ITC)是纳米电子器件热管理的关键任务. 本文采用非平衡态分子动力学方法研究了在界面处嵌入锡(Sn)纳米点对硅锗(Si/Ge) ITC的影响. 研究发现, 在声子弹性和非弹性两种竞争机制下ITC随Sn纳米点的数量的增加先升后降, 在嵌入4个Sn纳米点时达到顶峰, ITC是完美界面(无纳米点嵌入)时的1.92倍. 通过计算声子透射函数和态密度可以知道, ITC增加的原因是声子的非弹性散射得到加强, 增强的非弹性声子散射为界面声子输运打开了新的通道. 随着纳米点数量增加到一定值时, 声子的弹性散射逐渐占据主导地位, ITC开始降低.Regulating the interfacial thermal conductance is a key task in the thermal management of electronic devices, and implanting nanostructures at the interface is an effective way to improve the interfacial thermal conductance. In order to study the effect of the embedding of nanostructures on the thermal conductivity of the interface, the effect of embedding tin (Sn) nanodots at the interface on the interfacial thermal conductance of silicon-germanium (Si/Ge) composite material is investigated by using a non-equilibrium molecular dynamics simulation. It is found that the phonon transmission function of the hybrid interface with embedded nanodots is significantly larger than that of the perfect interface (there are no nanodots at interface). The enhanced transmission function plays a role in facilitating the thermal transport at the interface, which enhances the interfacial thermal conductance. The simulation results also indicate that the interfacial thermal conductance changes nonlinearly with the increase of the number of Sn nanodots, firstincreasing and then decreasing. This is attributed to the competition between two phonon transport mechanisms, which are elastic scattering of phonons and inelastic scattering of phonons. When four nanodots are inserted, the interfacial thermal conductance reaches a maximum value, which is 1.92 times that of a perfect interface. In order to reveal the reason why the interfacial thermal conductance varies nonlinearly with the number of nanodots, the transmission function and density of states of photons are calculated, and the result indicates that the increasing of interfacial thermal conductance is due to the enhancement of phonons inelastic scattering, which opens new channels for the interfacial phonons transport. As the number of nanodots increases to a certain value, the elastic scattering of phonons gradually dominates, and the interfacial thermal conductance starts to decrease. In addition, temperature is also a key factor affecting the interfacial thermal conductance. This study shows that as the temperature increases, more and more high-frequency phonons are excited, the phonons transmission function at the interface keeps increasing, and the enhanced inelastic scattering makes the interfacial thermal conductance keep increasing. This study provides theoretical guidance for improving the interfacial thermal conductance of electronic devices.
-
Keywords:
- interfacial thermal conductance /
- nanodots /
- molecular dynamics simulation /
- phonon
[1] Mayelifartash A, Abdol M A, Sadeghzadeh S 2021 Phys. Chem. Chem. Phys. 23 13310Google Scholar
[2] Basu R, Singh A 2021 Mater. Today Phys. 21 100468Google Scholar
[3] Jin Z 2021 Phys. Status Solidi B 258 2000443Google Scholar
[4] Gurunathan R, Hanus R, Graham S, Garg A, Snyder G J 2021 Phys. Rev. B 103 144302Google Scholar
[5] Rajabpour A, Bazrafshan S, Volz S 2019 Phys. Chem. Chem. Phys. 21 2507Google Scholar
[6] Bracht H, Eon S, Frieling R, Plech A, Issenmann D, Wolf D, Lundsgaard Hansen J, Nylandsted Larsen A, Ager III J W, Haller E E 2014 New J. Phys. 16 015021Google Scholar
[7] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar
Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar
[8] Yang L N, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[9] Deng S C, Xiao C D, Yuan J L, Ma D K, Li J H, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar
[10] 曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar
Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar
[11] Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar
[12] 刘英光, 薛新强, 张静文, 任国梁 2022 物理学报 71 093102Google Scholar
Liu Y G, Xue X Q, Zhang J W, Ren G L 2022 Acta Phys. Sin. 71 093102Google Scholar
[13] Han J J, Yang X F, Ren Y, Li Y, Li Y, Li Z X 2023 J. Phys. Condens. Matter 35 115001Google Scholar
[14] Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter 35 053001Google Scholar
[15] Wang X, Wang X L, Wang Z, Guo Y L, Wang Y P 2021 Chem. Phys. 542 111019Google Scholar
[16] Lee E, Zhang T, Yoo T, Guo Z, Luo T 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar
[17] Xu Y X, Wang G, Zhou Y G 2022 Int. J. Heat Mass Transfer 187 122499Google Scholar
[18] Ma D K, Zhang L F 2020 J. Phys. Condens. Matter 32 425001Google Scholar
[19] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar
[20] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[21] Liu Y G, Zhang J W, Ren G L, Chernatynskiy A 2022 Int. J. Heat Mass Transfer 189 122700Google Scholar
[22] Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar
[23] Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar
[24] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar
[25] Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar
[26] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar
[27] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[28] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 J. Phys. Chem. Lett. 11 11839Google Scholar
[29] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[30] Zhang Y Y, Ma D K, Zang Y, Wang X J, Yang N 2018 Front. Energy Res. 6 1Google Scholar
[31] Ong Z Y, Pop E 2010 Phys. Rev. B 81 155408Google Scholar
[32] Diao J, Srivastava D, Menon M, Chem J 2008 J. Chem. Phys. 128 164708Google Scholar
[33] Samvedi V, Tomar V 2009 Nanotechnology 20 365701Google Scholar
-
-
[1] Mayelifartash A, Abdol M A, Sadeghzadeh S 2021 Phys. Chem. Chem. Phys. 23 13310Google Scholar
[2] Basu R, Singh A 2021 Mater. Today Phys. 21 100468Google Scholar
[3] Jin Z 2021 Phys. Status Solidi B 258 2000443Google Scholar
[4] Gurunathan R, Hanus R, Graham S, Garg A, Snyder G J 2021 Phys. Rev. B 103 144302Google Scholar
[5] Rajabpour A, Bazrafshan S, Volz S 2019 Phys. Chem. Chem. Phys. 21 2507Google Scholar
[6] Bracht H, Eon S, Frieling R, Plech A, Issenmann D, Wolf D, Lundsgaard Hansen J, Nylandsted Larsen A, Ager III J W, Haller E E 2014 New J. Phys. 16 015021Google Scholar
[7] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar
Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar
[8] Yang L N, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar
[9] Deng S C, Xiao C D, Yuan J L, Ma D K, Li J H, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar
[10] 曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar
Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar
[11] Jia L, Ju S H, Liang X G, Zhang X 2016 Mater. Res. Express 3 095024Google Scholar
[12] 刘英光, 薛新强, 张静文, 任国梁 2022 物理学报 71 093102Google Scholar
Liu Y G, Xue X Q, Zhang J W, Ren G L 2022 Acta Phys. Sin. 71 093102Google Scholar
[13] Han J J, Yang X F, Ren Y, Li Y, Li Y, Li Z X 2023 J. Phys. Condens. Matter 35 115001Google Scholar
[14] Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter 35 053001Google Scholar
[15] Wang X, Wang X L, Wang Z, Guo Y L, Wang Y P 2021 Chem. Phys. 542 111019Google Scholar
[16] Lee E, Zhang T, Yoo T, Guo Z, Luo T 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar
[17] Xu Y X, Wang G, Zhou Y G 2022 Int. J. Heat Mass Transfer 187 122499Google Scholar
[18] Ma D K, Zhang L F 2020 J. Phys. Condens. Matter 32 425001Google Scholar
[19] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar
[20] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[21] Liu Y G, Zhang J W, Ren G L, Chernatynskiy A 2022 Int. J. Heat Mass Transfer 189 122700Google Scholar
[22] Qu X L, Gu J J 2020 RSC Adv. 10 1243Google Scholar
[23] Liang T, Zhou M, Zhang P, Yuan P, Yang D G 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar
[24] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar
[25] Loh G C, Teo E H T, Tay B K 2012 Diamond Relat. Mater. 23 88Google Scholar
[26] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar
[27] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[28] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 J. Phys. Chem. Lett. 11 11839Google Scholar
[29] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[30] Zhang Y Y, Ma D K, Zang Y, Wang X J, Yang N 2018 Front. Energy Res. 6 1Google Scholar
[31] Ong Z Y, Pop E 2010 Phys. Rev. B 81 155408Google Scholar
[32] Diao J, Srivastava D, Menon M, Chem J 2008 J. Chem. Phys. 128 164708Google Scholar
[33] Samvedi V, Tomar V 2009 Nanotechnology 20 365701Google Scholar
计量
- 文章访问数: 3773
- PDF下载量: 77
- 被引次数: 0