搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HfO2/NiOx/HfO2堆栈的三电阻态开关特性与导电机制

陈涛 张涛 殷元祥 谢雨莎 邱晓燕

引用本文:
Citation:

HfO2/NiOx/HfO2堆栈的三电阻态开关特性与导电机制

陈涛, 张涛, 殷元祥, 谢雨莎, 邱晓燕

Tri-level resistive switching characteristics and conductive mechanism of HfO2/NiOx/HfO2 stacks

Chen Tao, Zhang Tao, Yin Yuan-Xiang, Xie Yu-Sha, Qiu Xiao-Yan
PDF
HTML
导出引用
  • 采用磁控溅射制备了沿$\langle100\rangle $晶向择优生长的NiOx薄膜, 并与多晶HfO2薄膜组装成HfO2/NiOx/HfO2堆栈器件, 研究其电阻开关特性和导电机制. 微结构分析表明, NiOx薄膜主要成分为NiO和Ni2O3, 薄膜整体富含氧空位. HfO2/NiOx/HfO2堆栈器件初期呈现两电阻态的双极性电阻开关特性, 高低电阻比约为105; 但中后期逐步演变为具有“两级置位过程”的三电阻态开关特性. 器件循环耐受性大于3×103个周期, 数据持久性接近104 s. 器件高低电阻态满足欧姆导电机制, 而中间电阻态遵循空间电荷限制电流导电机制. NiOx薄膜中的氧空位导电细丝和上层HfO2薄膜中的空间电荷限制电流共同作用使得HfO2/NiOx/HfO2堆栈器件表现出稳定的三电阻态开关特性, 有望应用于多级非易失性存储器和类脑神经突触元件.
    With the extensive integration of portable computers and smartphones with “Internet of Things” technology, further miniaturization, high reading/writing speed and big storage capacity are required for the new-generation non-volatile memory devices. Compared with traditional charge memory and magnetoresistive memory, resistive random access memory (RRAM) based on transition metal oxides is one of the promising candidates due to its low power consumption, small footprint, high stack ability, fast switching speed and multi-level storage capacity.Inspired by the excellent resistive switching characteristics of NiO and HfO2, NiOx films are deposited by magnetron sputtering on the Pt$\langle111\rangle $ layer and the polycrystalline HfO2 film, respectively. Their microstructures, resistive switching characteristics and conductive mechanisms are studied. X-ray diffractometer data show the $\langle111\rangle $ preferred orientation for the NiOx film deposited on the Pt$\langle111\rangle $ layer but the $\langle100\rangle $ preferred one for the film deposited on the polycrystalline HfO2 layer. X-ray photoelectron depth profile of Ni 2p core level reveals that the NiOx film is the mixture of oxygen-deficient NiO and Ni2O3. NiOx(111) films show bipolar resistive switching (RS) characteristics with a clockwise current-voltage (I-V) loop, but its ratio of the high resistance to the low resistance (RH/RL) is only ~10, and its endurance is also poor. The NiOx(200)/HfO2 stack exhibits bipolar RS characteristics with a counterclockwise I-V loop. The RH/RL is greater than 104, the endurance is about 104 cycles, and the retention time exceeds 104 s. In the initial stage, the HfO2/NiOx(200)/HfO2 stack shows similar bi-level RS characteristics to the NiOx(200)/HfO2 stack. However, in the middle and the last stages, its I-V curves gradually evolve into tri-level RS characteristics with a “two-step Setting process” in the positive voltage region, showing potential applications in multilevel nonvolatile memory devices and brain-like neural synapses. Its I-V curves in the high and the low resistance state follow the relationship of ohmic conduction ($ I \propto V $), while the I-V curves in the intermediate resistance state are dominated by the space-charge-limited-current mechanism ($ I \propto V^2 $). The tri-level RS phenomena are attributed to the coexistence of the oxygen-vacancy conductive filaments in the NiOx(200) film and the space charge limited current in the upper HfO2 film.
      通信作者: 邱晓燕, qxy2001@swu.edu.cn
    • 基金项目: 重庆市自然科学基金 (批准号: cstc2019jcyj-msxm X0451)资助的课题.
      Corresponding author: Qiu Xiao-Yan, qxy2001@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxm X0451).
    [1]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 1066Google Scholar

    [2]

    Zhou G D, Ji X Y, Li J, Zhou F C, Dong Z K, Yan B T, Sun B, Wang W H, Hu X F, Song Q L, Wang L D, Duan S K 2022 iScience 25 105240Google Scholar

    [3]

    Zhou G D, Sun B, Hu X F, Sun L F, Zou Z, Xiao B, Qiu W K, Wu B, Li J, Han J J, Liao L P, Xu C Y, Xiao G, Xiao L H, Cheng J B, Zheng S H, Wang L D, Song Q L, Duan S K 2021 Adv. Sci. 8 2003765Google Scholar

    [4]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [5]

    Gibbons J F, Beadle W E 1964 Solid-State Electron. 7 785Google Scholar

    [6]

    Wang G Y, Hu L, Xia Y D, Li Q, Xu Q Y 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [7]

    Xia W Y, Sun X W, Yin Y F, Jia C H, Li G Q, Zhang W F 2020 AIP Adv. 10 105319Google Scholar

    [8]

    Chu J X, Li Y, Fan X H, Shao H H, Duan W J, Pei Y L 2018 Semicond. Sci. Technol. 33 115007Google Scholar

    [9]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504Google Scholar

    [10]

    Yuan X C, Wei X H, Dai B, Zeng H Z 2016 Appl. Surf. Sci. 362 506Google Scholar

    [11]

    D'Aquila K, Liu Y Z, Iddir H, Petford-Long A K 2015 Phys. Status Solidi RRL 9 301Google Scholar

    [12]

    Lee S, Kim D, Eom H, Kim W B, Yoo B 2014 Jpn. J. Appl. Phys. 53 024202Google Scholar

    [13]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [14]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507Google Scholar

    [15]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70Google Scholar

    [16]

    Kim J, Lee K, Sohn H 2009 J. Electrochem. Soc. 156 H881Google Scholar

    [17]

    Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J, Su H 2017 J. Mater. Sci. 52 238Google Scholar

    [18]

    Huang Y C, Chen P Y, Chin T S, Liu R S, Huang C Y, Lai C H 2012 Appl. Phys. Lett. 101 153106Google Scholar

    [19]

    Kim D C, Lee M J, Ahn S E, Seo S, Park J C, Yoo I K, Beak I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 232106Google Scholar

    [20]

    Qiu X Y, Wang R X, Zhang Z, Wei M L, Ji H, Chai Y, Zhou F C, Dai J Y, Zhang T, Li L T, Meng X S 2017 Appl. Phys. Lett. 111 142103Google Scholar

    [21]

    Chen X M, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. A-Mater. Sci. Process. 104 477Google Scholar

    [22]

    Li S, Wei X H, Lei Y, Yuan X C, Zeng H Z 2016 Appl. Surf. Sci. 389 977Google Scholar

    [23]

    Zhang T, Zhang Z, Chan C H, Li L T, Wei M L, Meng X S, Dai J Y, Qiu X Y 2018 J. Phys. D: Appl. Phys. 51 305105Google Scholar

    [24]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [25]

    Park M, Jeon B, Park J, Kim S 2022 Nanomaterials 12 4206Google Scholar

    [26]

    Chen Y J, Chang K C, Chang T C, Chen H L, Young T F, Tsai T M, Zhang R, Chu T J, Ciou J F, Lou J C, Chen K H, Chen J H, Zheng J C, Sze S M 2014 IEEE Electron Device Lett. 35 1016Google Scholar

    [27]

    Yan X Y, Wang X T, Wang D, et al. 2020 Nanotechnology 31 115209Google Scholar

    [28]

    Yin Y X, Xie Y S, Chen T, Xiang Y J, Zhou K, Qiu X Y 2023 Appl. Surf. Sci. 613 155994Google Scholar

    [29]

    Qiu X Y, Wang R X, Li G Q, et al. 2017 Appl. Surf. Sci. 406 212Google Scholar

    [30]

    Kim K S, Winograd N 1974 Surf. Sci. 43 625Google Scholar

    [31]

    Khan M Q, Ahmad K, Alsalme A, Kim H 2022 Mater. Chem. Phys. 289 126463Google Scholar

    [32]

    Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Lesniak M, Tyczkowski J 2021 Catalysts 11 905Google Scholar

    [33]

    Luo J M, Zhang H N, Chen S H, Yang X D, Bu S L, Wen J P 2016 Chem. Phys. Lett. 652 98Google Scholar

    [34]

    潘峰, 陈超 2014 阻变存储器材料与器件 (北京: 科学出版社) 第43页

    Pan F, Chen C 2014 Resistive Random Access Memory Materials and Devices (Beijing: Science Press) p43 (in Chinese)

    [35]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (America: John Wiley & Sons, Inc.) p227

    [36]

    Siddik A, Halder P K, Garu P, et al. 2020 J. Phys. D: Appl. Phys. 53 295103Google Scholar

    [37]

    Li Y, Fang P W, Fan X H, Pei Y L 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [38]

    Zhang W, Lei J Z, Dai Y X, Zhang X H, Kang L M, Peng B W, Hu F R 2022 Nanotechnology 33 255703Google Scholar

    [39]

    Li Z H, Li J C, Cui H P 2021 J. Alloys Compd. 858 158091Google Scholar

    [40]

    Ismail M, Chand U, Mahata C, Nebhen J, Kim S 2022 J. Mater. Sci. Technol. 96 94Google Scholar

    [41]

    Wang W, Covi E, Lin Y H, et al. 2021 IEEE Trans. Electron Devices 68 4342Google Scholar

    [42]

    Hong D S, Wang W X, Chen Y S, Sun J R, Shen B G 2014 Appl. Phys. Lett. 105 113504Google Scholar

    [43]

    Yuan F, Shen S S, Zhang Z G, Pan L Y, Xu J 2016 Superlattices Microstruct. 91 90Google Scholar

    [44]

    Razi P M, Angappane S, Gangineni R B 2021 Mater. Sci. Eng. B-Adv. 263 114852Google Scholar

    [45]

    Sun B, Zhang X J, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

  • 图 1  (a) Ag/HfO2/NiOx/HfO2/Pt-Si堆栈器件结构示意图; (b) 沉积在Pt-Si衬底上的NiOx薄膜, NiOx/HfO2和HfO2/NiOx/HfO2堆栈样品的XRD谱

    Fig. 1.  (a) Schematic diagram of the Ag/HfO2/NiOx/HfO2/Pt-Si stack; (b) XRD spectra of the NiOx film, NiOx/HfO2 and HfO2/NiOx/HfO2 stacks on Pt coated Si (Pt-Si) substrates.

    图 2  择优取向的(a) NiOx $\langle111\rangle $和(b) NiOx $\langle100\rangle $薄膜SEM照片和粒径分布统计图(右上插图)

    Fig. 2.  Top-view SEM images and particle size distributions (upper-right insets) of NiOx films with the preferred (a) $\langle111\rangle $ and (b) $\langle100\rangle $ orientations, respectively.

    图 3  HfO2/NiOx/HfO2堆栈样品横截面的(a) SEM照片, (b) EDS面扫描总谱以及(c) Ni, (d) O, (e) Pt和(f) Si元素的面分布图. 图(b)中插图为Ni, O, Pt和Hf元素的原子百分含量柱状图

    Fig. 3.  (a) Cross-sectional SEM image, (b) EDS spectrum, and EDS maps of (c) Ni, (d) O, (e) Pt and (f) Si elements for the HfO2/NiOx/HfO2 stack on the Pt-Si substrate. Inset in Fig.(b) shows the atomic percent of Ni, O, Pt, and Hf elements in the sample.

    图 4  (a) 沉积在Pt-Si衬底上的HfO2/NiOx/HfO2堆栈横截面的HRTEM照片; 图(a)中的(b) HfO2/NiOx界面局部区域(红色方框标注)和(c) NiOx/HfO2/Pt局部区域(白色方框标注)的高倍数HRTEM照片

    Fig. 4.  (a) HRTEM images for the cross sectional HfO2/NiOx/HfO2 stack on Pt-Si substrate. Magnified HRTEM images for (b) the HfO2/NiOx and (c) the NiOx/HfO2/Pt interfaces marked with the red and the white boxes in Fig.(a), respectively.

    图 5  HfO2/NiOx/HfO2堆栈中Hf, Ni, Pt和O的原子百分含量随刻蚀次数的变化

    Fig. 5.  Variations of the atomic percent for Hf, Ni, Pt, and O in the HfO2/NiOx/HfO2 stack with etching times.

    图 6  HfO2/NiOx/HfO2堆栈样品的(a) Pt 4f, (b) Hf 4f和(c) Ni 2p核心能级的XPS深度剖析谱

    Fig. 6.  XPS depth profiles of (a) Pt 4f, (b) Hf 4f and (c) Ni 2p core levels for the HfO2/NiOx/HfO2 stack.

    图 7  P1, P2和P3峰面积百分比随刻蚀次数的变化

    Fig. 7.  Variations of the peak area percentage for P1, P2, and P3 sub-peaks with etching times.

    图 8  HfO2/NiOx/HfO2堆栈器件的电阻开关特性 (a) I-V回线; (b) 0.1 V电压读取的高电阻态, 中间电阻态和低电阻态阻值随循环周期数的变化; (c) VSet1, VSet2VReset的累积概率分布以及(d) 器件在高(低)电阻态的持续时间

    Fig. 8.  Resistive switching properties of the HfO2/NiOx/HfO2 stack: (a) I-V loops; (b) variations of resistance for the HRS, IRS and LRS with the cycle number at the reading voltage of 0.1 V; (c) cumulative probability distributions of VSet1, VSet2 and VReset; (d) retention time of the HRS and the LRS.

    图 9  (a), (b) NiOx薄膜, (c), (d) NiOx/HfO2和(e)—(h) HfO2/NiOx/HfO2堆栈在对数-线性坐标中的I-V回线及其在双对数坐标中绘制的Set过程附近的I-V曲线

    Fig. 9.  I-V loops in logarithmic-linear scale and replotted I-V curves in double-logarithmic scale near the Set process of RRAM cells based on (a), (b) NiOx films, (c), (d) NiOx/HfO2 and (e)–(h) HfO2/NiOx/HfO2 stacks, respectively.

    图 10  HfO2/NiOx/HfO2堆栈器件电阻开关微观机制示意图 (a) 扩散过程; (b) Set1过程; (c) Set2过程; (d) Reset过程

    Fig. 10.  Schematic illustrations of the resistive switching mechanism for the HfO2/NiOx/HfO2 stack in the (a) diffusion; (b) Set1; (c) Set2 and (d) Reset processes

    表 1  Ag/HfO2/NiOx/HfO2/Pt堆栈器件的制备工艺参数

    Table 1.  Preparation parameters of the Ag/HfO2/NiOx/HfO2/Pt stack.

    成分溅射源
    (99.99%纯度)
    生长气氛
    流量(比)
    衬底
    温度/℃
    溅射方式
    功率/W, 偏压/V
    生长
    时间/min
    退火气氛
    流量(比)
    退火
    温度/℃
    退火
    时间/min
    Pt金属层Pt金属靶2.7 Pa Ar+O2
    Ar∶O2 = 17∶3
    700直流
    25, 0
    5
    HfO2薄膜HfO2陶瓷靶3 Pa Ar
    30 sccm
    350射频
    70, 0
    203 Pa O2
    30 sccm
    35030
    NiOx薄膜Ni金属靶0.5 Pa Ar+O2
    Ar∶O2 = 4∶1
    700射频
    60, 0
    900.5 Pa Ar+O2
    Ar∶O2 = 4∶1
    70030
    Ag电极Ag金属靶0.5 Pa Ar
    30 sccm
    250直流
    25, –100
    10
    注: sccm为cm3/min.
    下载: 导出CSV

    表 2  各种氧化物/NiOx堆栈RRAM器件的电阻开关性能参数

    Table 2.  Resistive switching parameters of RRAM cells based on various oxide/NiOx stacks.

    Cell structureSwitching typeVSet/VVReset/VRH/RLEnduranceRetention/sRef.
    NiFe/Al2O3/NiO/PtUnipolar2.30—4.200.55—1.50~1×103>1×1021×104[6]
    Pt/IrO2/NiO/IrO2/PtUnipolar1.430.41> 1×1022×102[19]
    Ag/HfO2/NiO/PtBipolar0.20–0.20> 1×103> 5×103> 1×103[20]
    Pt/NiO/Mg0.6Zn0.4O/PtRectifying0.54—0.62~1×1061×1026×104[21]
    Au/BaTiO3/NiO/PtUnipolar2.001.00[22]
    Ag/HfO2/nb-NiO/PtBipolar0.16—0.38–0.19— –0.38~1×1041.2×103>1×104[28]
    Pt/BiFeO3/NiO/PtBipolar1.00—1.50–0.20— –0.60> 1030[33]
    Ag/NiOx/HfO2/PtBipolar0.12—0.18–0.02— –0.17> 1×104~1×104> 1×104Reference cell
    Ag/HfO2/NiOx/HfO2/PtBipolarSet1: 0.13—0.17–0.03— –0.17~1×105> 3×103~1×104This work
    Set2: 0.21—0.40~1×102
    下载: 导出CSV
  • [1]

    Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F, Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J B 2022 Science 376 1066Google Scholar

    [2]

    Zhou G D, Ji X Y, Li J, Zhou F C, Dong Z K, Yan B T, Sun B, Wang W H, Hu X F, Song Q L, Wang L D, Duan S K 2022 iScience 25 105240Google Scholar

    [3]

    Zhou G D, Sun B, Hu X F, Sun L F, Zou Z, Xiao B, Qiu W K, Wu B, Li J, Han J J, Liao L P, Xu C Y, Xiao G, Xiao L H, Cheng J B, Zheng S H, Wang L D, Song Q L, Duan S K 2021 Adv. Sci. 8 2003765Google Scholar

    [4]

    朱玮, 郭恬恬, 刘兰, 周荣荣 2021 物理学报 70 068502Google Scholar

    Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70 068502Google Scholar

    [5]

    Gibbons J F, Beadle W E 1964 Solid-State Electron. 7 785Google Scholar

    [6]

    Wang G Y, Hu L, Xia Y D, Li Q, Xu Q Y 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [7]

    Xia W Y, Sun X W, Yin Y F, Jia C H, Li G Q, Zhang W F 2020 AIP Adv. 10 105319Google Scholar

    [8]

    Chu J X, Li Y, Fan X H, Shao H H, Duan W J, Pei Y L 2018 Semicond. Sci. Technol. 33 115007Google Scholar

    [9]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504Google Scholar

    [10]

    Yuan X C, Wei X H, Dai B, Zeng H Z 2016 Appl. Surf. Sci. 362 506Google Scholar

    [11]

    D'Aquila K, Liu Y Z, Iddir H, Petford-Long A K 2015 Phys. Status Solidi RRL 9 301Google Scholar

    [12]

    Lee S, Kim D, Eom H, Kim W B, Yoo B 2014 Jpn. J. Appl. Phys. 53 024202Google Scholar

    [13]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [14]

    Li J C, Hou X Y, Cao Q 2014 J. Appl. Phys. 115 164507Google Scholar

    [15]

    Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H, Sohn H 2011 Curr. Appl. Phys. 11 e70Google Scholar

    [16]

    Kim J, Lee K, Sohn H 2009 J. Electrochem. Soc. 156 H881Google Scholar

    [17]

    Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J, Su H 2017 J. Mater. Sci. 52 238Google Scholar

    [18]

    Huang Y C, Chen P Y, Chin T S, Liu R S, Huang C Y, Lai C H 2012 Appl. Phys. Lett. 101 153106Google Scholar

    [19]

    Kim D C, Lee M J, Ahn S E, Seo S, Park J C, Yoo I K, Beak I G, Kim H J, Yim E K, Lee J E, Park S O, Kim H S, Chung U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 232106Google Scholar

    [20]

    Qiu X Y, Wang R X, Zhang Z, Wei M L, Ji H, Chai Y, Zhou F C, Dai J Y, Zhang T, Li L T, Meng X S 2017 Appl. Phys. Lett. 111 142103Google Scholar

    [21]

    Chen X M, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. A-Mater. Sci. Process. 104 477Google Scholar

    [22]

    Li S, Wei X H, Lei Y, Yuan X C, Zeng H Z 2016 Appl. Surf. Sci. 389 977Google Scholar

    [23]

    Zhang T, Zhang Z, Chan C H, Li L T, Wei M L, Meng X S, Dai J Y, Qiu X Y 2018 J. Phys. D: Appl. Phys. 51 305105Google Scholar

    [24]

    Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575Google Scholar

    [25]

    Park M, Jeon B, Park J, Kim S 2022 Nanomaterials 12 4206Google Scholar

    [26]

    Chen Y J, Chang K C, Chang T C, Chen H L, Young T F, Tsai T M, Zhang R, Chu T J, Ciou J F, Lou J C, Chen K H, Chen J H, Zheng J C, Sze S M 2014 IEEE Electron Device Lett. 35 1016Google Scholar

    [27]

    Yan X Y, Wang X T, Wang D, et al. 2020 Nanotechnology 31 115209Google Scholar

    [28]

    Yin Y X, Xie Y S, Chen T, Xiang Y J, Zhou K, Qiu X Y 2023 Appl. Surf. Sci. 613 155994Google Scholar

    [29]

    Qiu X Y, Wang R X, Li G Q, et al. 2017 Appl. Surf. Sci. 406 212Google Scholar

    [30]

    Kim K S, Winograd N 1974 Surf. Sci. 43 625Google Scholar

    [31]

    Khan M Q, Ahmad K, Alsalme A, Kim H 2022 Mater. Chem. Phys. 289 126463Google Scholar

    [32]

    Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Lesniak M, Tyczkowski J 2021 Catalysts 11 905Google Scholar

    [33]

    Luo J M, Zhang H N, Chen S H, Yang X D, Bu S L, Wen J P 2016 Chem. Phys. Lett. 652 98Google Scholar

    [34]

    潘峰, 陈超 2014 阻变存储器材料与器件 (北京: 科学出版社) 第43页

    Pan F, Chen C 2014 Resistive Random Access Memory Materials and Devices (Beijing: Science Press) p43 (in Chinese)

    [35]

    Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd Ed.) (America: John Wiley & Sons, Inc.) p227

    [36]

    Siddik A, Halder P K, Garu P, et al. 2020 J. Phys. D: Appl. Phys. 53 295103Google Scholar

    [37]

    Li Y, Fang P W, Fan X H, Pei Y L 2020 Semicond. Sci. Technol. 35 055004Google Scholar

    [38]

    Zhang W, Lei J Z, Dai Y X, Zhang X H, Kang L M, Peng B W, Hu F R 2022 Nanotechnology 33 255703Google Scholar

    [39]

    Li Z H, Li J C, Cui H P 2021 J. Alloys Compd. 858 158091Google Scholar

    [40]

    Ismail M, Chand U, Mahata C, Nebhen J, Kim S 2022 J. Mater. Sci. Technol. 96 94Google Scholar

    [41]

    Wang W, Covi E, Lin Y H, et al. 2021 IEEE Trans. Electron Devices 68 4342Google Scholar

    [42]

    Hong D S, Wang W X, Chen Y S, Sun J R, Shen B G 2014 Appl. Phys. Lett. 105 113504Google Scholar

    [43]

    Yuan F, Shen S S, Zhang Z G, Pan L Y, Xu J 2016 Superlattices Microstruct. 91 90Google Scholar

    [44]

    Razi P M, Angappane S, Gangineni R B 2021 Mater. Sci. Eng. B-Adv. 263 114852Google Scholar

    [45]

    Sun B, Zhang X J, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

  • [1] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] 石志鑫, 周大雨, 李帅东, 徐进, UweSchröder. 一阶回转曲线图谱法及其在HfO2基铁电薄膜极化翻转行为研究中的应用. 物理学报, 2021, 70(12): 127702. doi: 10.7498/aps.70.20210115
    [4] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [5] 代广珍, 姜永召, 倪天明, 刘鑫, 鲁麟, 刘琦. 变组分Al对HfO2阻变特性影响: 第一性原理研究. 物理学报, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [6] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [7] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [8] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [9] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [10] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [11] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [12] 庞华, 邓宁. Ni/HfO2/Pt阻变单元特性与机理的研究. 物理学报, 2014, 63(14): 147301. doi: 10.7498/aps.63.147301
    [13] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质. 物理学报, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [14] 徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军. HfO2顶层多层介质膜脉宽压缩光栅的离子束刻蚀. 物理学报, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [15] 黄玥, 苟鸿雁, 廖忠伟, 孙清清, 张卫, 丁士进. 基于Al2O3/Pt纳米晶/HfO2叠层的MOS电容存储效应研究. 物理学报, 2010, 59(3): 2057-2063. doi: 10.7498/aps.59.2057
    [16] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [17] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [18] 萨 宁, 康晋锋, 杨 红, 刘晓彦, 张 兴, 韩汝琦. 具有HfN/HfO2栅结构的p型MOSFET中的负偏置-温度不稳定性研究. 物理学报, 2006, 55(3): 1419-1423. doi: 10.7498/aps.55.1419
    [19] 卢红亮, 徐 敏, 陈 玮, 任 杰, 丁士进, 张 卫. 四角晶相HfO2(001)表面原子和电子结构研究. 物理学报, 2006, 55(3): 1374-1378. doi: 10.7498/aps.55.1374
    [20] 阎志军, 王印月, 徐 闰, 蒋最敏. 电子束蒸发制备HfO2高k薄膜的结构特性. 物理学报, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
计量
  • 文章访问数:  3513
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-07
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-07-20

/

返回文章
返回