搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究

高城 刘彦鹏 严冠鹏 闫杰 陈小棋 侯永 靳奉涛 吴建华 曾交龙 袁建民

引用本文:
Citation:

局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究

高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民

Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium

Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min
PDF
HTML
导出引用
  • 锡(Sn)是13.5 nm光刻光源的材料, Sn等离子体辐射性质对光源设计意义重大. 基于细致能级模型, 在局域热平衡假设条件下计算得到了Sn等离子体辐射不透明度和发射谱. 使用多组态Dirac-Fock方法获得了${\rm{Sn}}^{6+}\text{-}{\rm{Sn}}^{14+}$离子的能级和辐射跃迁振子强度等基本原子参数. 针对波长在13.5 nm附近的4d-4f和4p-4d跃迁系, 重点考虑了4dm-4f m(m = 1, 2, 3, 4)和4pn-4dn(n = 1, 2, 3)的电子关联效应. 在大规模组态相互作用计算中, 每种电荷态离子的精细能级数目约为20万. 对较强的吸收谱线(振子强度大于0.01), 其长度和速度表示的相对差异为20%—30%. 基于精密原子参数, 计算了Sn等离子体在30 eV, 0.01 g/cm3条件下的透射谱, 与实验结果基本符合. 系统计算了温度16—30 eV, 密度0.0001—0.1 g/cm3条件下的Sn等离子体辐射不透明度和发射光谱, 分析了极紫外(extreme ultraviolet, EUV)光谱随温度和密度的变化规律. 研究表明温度一定时, 密度增大会使得13.5 nm附近的辐射不透明度和发射谱包络增宽. 而密度一定时, 随着温度的增加, 辐射不透明度和发射谱在13.5 nm附近存在明显的窄化效应. 本文工作有助于EUV光刻光源的设计和研究.
    Sn is the material for an extreme ultraviolet (EUV) light source working at 13.5 nm, therefore the radiative properties of Sn plasma are of great importance in designing light source. The radiative opacity and emissivity of Sn plasma at local thermodynamic equilibrium are investigated by using a detailed-level-accounting model. In order to obtain precise atomic data, a multi-configuration Dirac-Fock method is used to calculate energy levels and oscillator strengths of ${\rm{Sn}}^{6+}$-${\rm{Sn}}^{14+}$. The electronic correlation effects of $4{\rm d}^m\text{-}4{\rm f}^m$($m=1, 2, 3, 4$) and $ 4\mathrm{p}^n\text{-}4\mathrm{d}^n $($n=1, 2, 3$) are mainly considered, which dominate the radiation near 13.5 nm. The number of fine-structure levels reaches about 200000 for each ionization stage in the present large-scale configuration interaction calculations. For the large oscillator strengths (> 0.01), the length form is in accord with the velocity form and their relative difference is about 20%–30%. The calculated transmission spectra of Sn plasma at 30 eV and 0.01 g/cm3 are compared with the experimental result, respectively, showing that they have both good consistency. The radiative opacity and emissivity of Sn plasma at the temperature in a range of 16–30 eV and density in a scope of of 0.0001–0.1 g/cm3 are investigated systematically. The effects of the plasma temperature and plasma density on radiation characteristics are studied. The results show that the radiative properties near 13.5 nm are broadened with the increase of density at a specific temperature, while it is narrowed with the increase of temperature for a specific density. The present investigation should be helpful in designing and studying EUV light source in the future.
      通信作者: 高城, gaocheng@nudt.edu.cn ; 吴建华, wujh@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074430, 11974423)和激光与物质相互作用国家重点实验室开放基础研究(批准号: SKLIM2008)资助的课题.
      Corresponding author: Gao Cheng, gaocheng@nudt.edu.cn ; Wu Jian-Hua, wujh@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074430, 11974423) and the Foundation Research of the State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLIM2008).
    [1]

    Pirati A, Van Shoot J, Troost K, van Ballegoij R, Krabbendam P, Stoeldraijer J, Loopstra E, Benschop J, Finders J, Meiling H, van Setten E, Mika N, Driedonkx J, Stamm U 2017 Proc. SPIE 10143 101430GGoogle Scholar

    [2]

    Hutcheson G D 2018 Proc. SPIE 10583 1058303

    [3]

    David A 2007 Soft x-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge: Cambridge University Press) pp17–20

    [4]

    宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦 2020 中国光学 13 28Google Scholar

    Zong N, Hu W M, Wang Z M, Wang X J, Zhang S J, Bo Y, Peng Q J, Xu Z Y 2020 Chin. Opt. 13 28Google Scholar

    [5]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [6]

    Kieft E R, Garloff K, van der Mullen J J A M, Banine V 2005 Phys. Rev. E 71 036402Google Scholar

    [7]

    Ueno Y, Soumagne G, Sumitani A, Endo A, Higashiguchi T 2007 Appl. Phys. Lett. 91 231501Google Scholar

    [8]

    Svendsen W, O’Sullivan G 1994 Phys. Rev. A 50 3710Google Scholar

    [9]

    Churilov S S, Ryabtsev A N 2006 Opt. Spectrosc. 101 169Google Scholar

    [10]

    D'Arcy R, Ohashi H, Suda S, Tanuma H, Fujioka S, Nishimura H, Nishihara K, Suzuki C, Kato T, Koike F, White J, O’Sullivan G 2009 Phys. Rev. A 79 042509Google Scholar

    [11]

    Ohashi H, Suda S, Tanuma H, Fujioka S, Nishimura H, Sasaki A, Nishihara K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 065204Google Scholar

    [12]

    O'Sullivan G, Li B, D’Arcy R, Dunne P, Hayden P, Kilbane D, McCormack T, Ohashi H, O'Reilly F, Sheridan P, Sokell E, Suzuki C, Higashiguchi T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144025Google Scholar

    [13]

    Windberger A, Torretti F, Borschevsky A, Ryabtsev A, Dobrodey S, Bekker H, Eliav E, Kaldor U, Ubachs W, Hoekstra R, Crespo López-Urrutia J R, Versolato O O 2016 Phys. Rev. A 94 012506Google Scholar

    [14]

    Torretti F, Windberger A, Ryabtsev A, Dobrodey S, Bekker H, Ubachs W, Hoekstra R, Kahl E V, Berengut J C, Crespo López-Urrutia J R, Versolato O O 2017 Phys. Rev. A 95 042503Google Scholar

    [15]

    Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045005Google Scholar

    [16]

    de Gaufridy de Dortan F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 599Google Scholar

    [17]

    Koike F, Fritzsche S 2007 Radiat. Phys. Chem. 76 404Google Scholar

    [18]

    Kagawa T, Tanuma H, Ohashi H, Nishihara K 2007 J. Phys.: Conf. Ser. 58 149Google Scholar

    [19]

    Eliav E, Kaldor U, Ishikawa Y 1994 Phys. Rev. A 49 1724Google Scholar

    [20]

    Berengut J C, Flambaum V V, Kozlov M G 2006 Phys. Rev. A 73 012504Google Scholar

    [21]

    Lysaght M, Kilbane D, Murphy N, Cummings A, Dunne P, O’Sullivan G 2005 Phys. Rev. A 72 014502Google Scholar

    [22]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [23]

    蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100Google Scholar

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100Google Scholar

    [24]

    陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 物理学报 64 075202Google Scholar

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202Google Scholar

    [25]

    Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017 Sci. Rep. 7 45212Google Scholar

    [26]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Sheil J, Scheers J, Kurilovich D, Bayerle A, Schafgans A A, Purvis M, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato O O 2019 Appl. Phys. Lett. 115 124101Google Scholar

    [27]

    Zeng J, Gao C, Yuan J 2010 Phys. Rev. E 82 026409Google Scholar

    [28]

    Colgan J, Kilcrease D P, Jr. Abdallah J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133Google Scholar

    [29]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar

    [30]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002Google Scholar

    [31]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press

    [32]

    Jönson P, Gaigalas G, Bieroń, Froese Fischer C, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [33]

    Zeng J L, Yuan J M 2006 Phys. Rev. E 74 025401(RGoogle Scholar

    [34]

    Gao C, Zeng J, Jin F, Yuan J 2013 High Energy Density Phys. 9 419Google Scholar

    [35]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022 Sci. China-Phys. Mech. Astron. 65 233011Google Scholar

    [36]

    Stewart J C, Pyatt K D Jr. 1966 Astrophys. J. 144 1203Google Scholar

    [37]

    李世昌 1992 高温辐射物理与量子辐射理论 (北京: 国防工业出版社) 第6页

    Li S C 1992 High Temperature Radiation Physics and Quantum Radaition Theory (Beijing: National Defense Industry Press) p6

    [38]

    Zeng J L, Zhao G, Yuan J M 2006 J. Quant. Spectrosc. Radiat. Transfer 102 172Google Scholar

    [39]

    Wu Z W, Tian Z Q, An Y H, Dong C Z 2021 Astrophys. J. 910 142Google Scholar

    [40]

    Kühn S, Cheung C, Oreshkina N S, Steinbrügge, Togawa M, Bernitt S, Berger L, Buck J, Hoesch M, Seltmann J, Trinter F, Keitel C H, Kozlov M G, Porsev S G, Gu M F, Porter F S, Pfeifer T, Leutenegger M A, Harman Z, Safronova M S, López-Urrutia J R C, Shah C 2022 Phys. Rev. Lett. 129 245001Google Scholar

    [41]

    Colgan J, Kilcrease D P, Magee N H, Sherrill M E, Abdallah Jr. J, Hakel P, Fontes C J, Guzik J A, Mussack K A 2016 Astrophys. J. 817 116Google Scholar

    [42]

    兰慧 2016 博士学位论文 (武汉: 华中科技大学)

    Lan H 2016 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [43]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Yu, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [44]

    Gao C, Zeng J, Li Y, Jin F, Yuan J 2013 High Energy Density Phys. 9 583Google Scholar

  • 图 1  (a) ${\rm{Sn}}^{5+}$, (b) ${\rm{Sn}}^{8+}$, (c) ${\rm{Sn}}^{10+}$和(d) ${\rm{Sn}}^{13+}$离子的4s, 4p, 4d和4f轨道波函数

    Fig. 1.  Radial wavefunctions of 4s, 4p, 4d and 4f belonging to (a) ${\rm{Sn}}^{5+}$, (b) ${\rm{Sn}}^{8+}$, (c) ${\rm{Sn}}^{10+}$ and (d) ${\rm{Sn}}^{13+}$.

    图 2  ${\rm{Sn}}^{10+}$束缚组态, 其中长条表示相应组态分裂而成的精细能级的能量范围, 虚线表示电离阈值

    Fig. 2.  Bound configurations of ${\rm{Sn}}^{10+}$. Each bar represents the energy range of fine-structure levels belonging to the corresponding configuration. The dashed line represents ionization threshold.

    图 3  ${\rm{Sn}}^{10+}$振子强度 (a) 振子强度的长度和速度表示, 红色虚线斜率为1; (b) 波长11—20 nm的振子强度长度和速度表示的比值, 上下两条红色虚线分别表示比值为1和0.8

    Fig. 3.  Oscillator strengths of ${\rm{Sn}}^{10+}$: (a) Length and velocity forms of oscillator strengths; the slope of the red dashed line is 1; (b) ratio of length form to velocity form. The upper and lower red dashed lines represent 1 and 0.8, respectively.

    图 4  温度30 eV, 密度0.01 g/cm3条件下Sn等离子体中不同电荷态对辐射不透明度的贡献 (a) ${\rm{Sn}}^{9+}$; (b) ${\rm{Sn}}^{10+}$; (c) ${\rm{Sn}}^{11+}$; (d) ${\rm{Sn}}^{12+}$; (e)总不透明度, 红线为只包含基组态和单电子激发组态的结果, 绿线为包括了基组态、单电子和双电子激发组态的结果

    Fig. 4.  Radiative opacity of Sn at a temperature of 30 eV and a density of 0.01 g/cm3 contributed by different ionization stages: (a) ${\rm{Sn}}^{9+}$; (b) ${\rm{Sn}}^{10+}$; (c) ${\rm{Sn}}^{11+}$; (d) ${\rm{Sn}}^{12+}$; (e) total opacity. The red line represents the result including only ground and singly excited configurations. The green line represents the result including ground, singly and doubly excited configurations

    图 5  Sn等离子体透射谱 (a)温度30 eV, 密度0.01 g/cm3时本文计算、ATOMIC[28]与实验[22]结果; (b) 本文计算的密度0.01 g/cm3, 温度为25, 27, 30和32 eV的Sn等离子体透射谱. 本文计算取仪器展宽为0.5 eV

    Fig. 5.  Transmission spectra of Sn plasmas: (a) Present calculation, ATOMIC[28] and experimental results[22] of Sn at a temperature of 30 eV and a density of 0.01 g/cm3; (b) present calculated transmission spectra of Sn at a density of 0.01 g/cm3 and temperatures of 25, 27, 30 and 32 eV. The instrumental broadening in the present calculation is set to be 0.5 eV

    图 6  温度为20 eV, 密度为(a) 0.0001, (b) 0.001, (c) 0.01和(d) 0.1 g/cm3的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图). 平均电离度分别为10.96, 9.63, 8.36和7.16, 自由电子密度分别为5.56 × 1018, 4.89 × 1019, 4.24 × 1020和3.63 × 1021 cm–3. 红色虚线表示中心波长13.5 nm, 带宽2%的波长范围

    Fig. 6.  EUV Radiative opacity (left) and emissivity (right) of Sn plasmas at a temperature of 20 eV and densities of (a) 0.0001, (b) 0.001, (c) 0.01 and (d) 0.1 g/cm3. The average ionization is 10.96, 9.63, 8.36 and 7.16, respectively. The free electron density is 5.56 × 1018, 4.89 × 1019, 4.24 × 1020 and 3.63 × 1021 cm–3, respectively. The red-dashed lines represent the 2% wavelength region centered at 13.5 nm

    图 7  温度为23 eV, 密度为(a) 0.001, (b) 0.005, (c) 0.01和(d) 0.1 g/cm3的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 7.  EUV Radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a temperature of 23 eV and densities of (a) 0.001, (b) 0.005, (c) 0.01 and (d) 0.1 g/cm3

    图 8  温度为27 eV, 密度为(a) 0.001, (b) 0.005, (c) 0.01和(d) 0.1 g/cm3的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 8.  EUV Radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a temperature of 27 eV and densities of (a) 0.001, (b) 0.005, (c) 0.01 and (d) 0.1 g/cm3

    图 9  密度为0.0001 g/cm3, 温度为(a) 16, (b) 18, (c) 20和(d) 23 eV的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 9.  EUV radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a density of 0.0001 g/cm3 and temperatures of (a) 16, (b) 18, (c) 20 and (d) 23 eV

    图 10  密度为0.001 g/cm3, 温度为(a) 18, (b) 20, (c) 23, (d) 25和(e) 27 eV的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 10.  EUV radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a density of 0.001 g/cm3 and temperatures of (a) 18, (b) 20, (c) 23, (d) 25 and (e) 27 eV

    图 12  密度为0.1 g/cm3, 温度为(a) 20, (b) 23, (c) 25, (d) 27和(e) 30 eV的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 12.  EUV radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a density of 0.1 g/cm3 and temperatures of (a) 20, (b) 23, (c) 25, (d) 27 and (e) 30 eV

    图 11  密度为0.01 g/cm3, 温度为(a) 20, (b) 23, (c) 25, (d) 27和(e) 30 eV的Sn等离子体EUV辐射不透明度(左图)和发射系数(右图)

    Fig. 11.  EUV radiative opacity (left panel) and emissivity (right panel) of Sn plasmas at a density of 0.01 g/cm3 and temperatures of (a) 20, (b) 23, (c) 25, (d) 27 and (e) 30 eV

    表 1  ${\rm{Sn}}^{10+}$基组态4s24p64d4的精细能级(单位: eV), 能级符号中省略了满壳层的4s和4p轨道.

    Table 1.  Fine-structure levels belonging to the ground configuration 4s24p64d4 of ${\rm{Sn}}^{10+}$ (Unit: eV), where the fully occupied 4s and 4p orbitals are omitted.

    能级 J 本文(MCDF) 实验[14] CI+MBPT [14]
    1 ${\rm{4d}}_{3/2}^4$ 0 0.00 0.00 0.00
    2 $(\text{4d}_{3/2}^3)_{3/2}\text{4d}_{5/2}$ 1 0.36 0.38 0.39
    3 $(\text{4d}_{3/2}^2)_{2}(\text{4d}_{5/2}^2)_4$ 2 0.79 0.82 0.83
    4 $(\text{4d}_{3/2}^2)_{2}(\text{4d}_{5/2}^2)_4$ 3 1.22 1.25 1.27
    5 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{9/2}$ 4 1.64 1.65 1.68
    6 $(\text{4d}_{3/2}^2)_{2}(\text{4d}_{5/2}^2)_2$ 0 3.48 3.32 3.28
    7 $(\text{4d}_{3/2}^3)_{3/2}\text{4d}_{5/2}$ 4 3.98 3.67 3.60
    8 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_2$ 3 4.58 4.33 4.29
    9 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{9/2}$ 5 4.61 4.36 4.30
    10 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_2$ 1 4.68 4.39 4.39
    11 $(\text{4d}_{3/2}^3)_{3/2}\text{4d}_{5/2}$ 2 4.80 4.55 4.54
    12 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_4$ 6 5.09 4.74 4.67
    13 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{9/2}$ 4 5.29 5.02 4.99
    14 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_2$ 2 5.61 5.38 5.40
    15 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_2$ 4 5.72 5.43 5.40
    16 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{3/2}$ 3 5.87 5.60 5.60
    17 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_2$ 3 6.27 5.99 5.99
    18 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_4$ 5 6.36 6.06 6.03
    19 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{3/2}$ 2 6.69 6.42 6.43
    20 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{3/2}$ 1 6.81 6.55 6.56
    21 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{9/2}$ 6 7.15 6.68 6.60
    22 $\text{4d}_{5/2}^4$ 4 7.72 7.40 7.38
    23 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{3/2}$ 0 7.77 7.55 7.57
    24 $\text{4d}_{5/2}^4$ 2 8.41 8.01 8.00
    25 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{3/2}$ 3 8.89 8.43 8.42
    26 $(\text{4d}_{3/2}^2)_0(\text{4d}_{5/2}^2)_2$ 2 9.86 9.40
    27 $(\text{4d}_{3/2}^2)_0(\text{4d}_{5/2}^2)_4$ 4 10.27 9.77 9.78
    28 $(\text{4d}_{3/2}^2)_2(\text{4d}_{5/2}^2)_0$ 2 10.48 9.97 9.98
    29 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{5/2}$ 3 10.66 10.15 10.16
    30 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{5/2}$ 1 10.77 10.30
    31 $\text{4d}_{5/2}^4$ 0 11.23 10.77
    32 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{5/2}$ 4 11.79 11.11
    33 $\text{4d}_{3/2}(\text{4d}_{5/2}^3)_{5/2}$ 2 14.70 13.95
    34 $(\text{4d}_{3/2}^2)_0(\text{4d}_{5/2}^2)_0$ 0 18.87 17.98
    下载: 导出CSV

    表 2  不同温度和密度条件下, Sn等离子体在(13.5 ± 2%) nm波长范围的总发射功率. a(b)表示a × $10^{b}$

    Table 2.  Total emissivity of Sn plasmas in (13.5 ± 2%) nm wavelength region at a variety of temperature and density. a(b) represents a × $10^{b}$

    $T_{\rm{e}}$/eV ρ/(g·cm–3) $j_{{\rm{tot}}}$/(W·cm–3)
    20 0.0001 4.52(10)
    0.001 7.86(11)
    0.01 6.68(12)
    0.1 8.36(13)
    23 0.0001 5.50(10)
    0.001 1.01(12)
    0.01 1.42(13)
    0.1 1.69(14)
    27 0.001 1.13(12)
    0.005 9.07(12)
    0.01 2.24(13)
    0.1 3.11(14)
    下载: 导出CSV
  • [1]

    Pirati A, Van Shoot J, Troost K, van Ballegoij R, Krabbendam P, Stoeldraijer J, Loopstra E, Benschop J, Finders J, Meiling H, van Setten E, Mika N, Driedonkx J, Stamm U 2017 Proc. SPIE 10143 101430GGoogle Scholar

    [2]

    Hutcheson G D 2018 Proc. SPIE 10583 1058303

    [3]

    David A 2007 Soft x-rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge: Cambridge University Press) pp17–20

    [4]

    宗楠, 胡蔚敏, 王志敏, 王小军, 张申金, 薄勇, 彭钦军, 许祖彦 2020 中国光学 13 28Google Scholar

    Zong N, Hu W M, Wang Z M, Wang X J, Zhang S J, Bo Y, Peng Q J, Xu Z Y 2020 Chin. Opt. 13 28Google Scholar

    [5]

    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001Google Scholar

    [6]

    Kieft E R, Garloff K, van der Mullen J J A M, Banine V 2005 Phys. Rev. E 71 036402Google Scholar

    [7]

    Ueno Y, Soumagne G, Sumitani A, Endo A, Higashiguchi T 2007 Appl. Phys. Lett. 91 231501Google Scholar

    [8]

    Svendsen W, O’Sullivan G 1994 Phys. Rev. A 50 3710Google Scholar

    [9]

    Churilov S S, Ryabtsev A N 2006 Opt. Spectrosc. 101 169Google Scholar

    [10]

    D'Arcy R, Ohashi H, Suda S, Tanuma H, Fujioka S, Nishimura H, Nishihara K, Suzuki C, Kato T, Koike F, White J, O’Sullivan G 2009 Phys. Rev. A 79 042509Google Scholar

    [11]

    Ohashi H, Suda S, Tanuma H, Fujioka S, Nishimura H, Sasaki A, Nishihara K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 065204Google Scholar

    [12]

    O'Sullivan G, Li B, D’Arcy R, Dunne P, Hayden P, Kilbane D, McCormack T, Ohashi H, O'Reilly F, Sheridan P, Sokell E, Suzuki C, Higashiguchi T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 144025Google Scholar

    [13]

    Windberger A, Torretti F, Borschevsky A, Ryabtsev A, Dobrodey S, Bekker H, Eliav E, Kaldor U, Ubachs W, Hoekstra R, Crespo López-Urrutia J R, Versolato O O 2016 Phys. Rev. A 94 012506Google Scholar

    [14]

    Torretti F, Windberger A, Ryabtsev A, Dobrodey S, Bekker H, Ubachs W, Hoekstra R, Kahl E V, Berengut J C, Crespo López-Urrutia J R, Versolato O O 2017 Phys. Rev. A 95 042503Google Scholar

    [15]

    Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045005Google Scholar

    [16]

    de Gaufridy de Dortan F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 599Google Scholar

    [17]

    Koike F, Fritzsche S 2007 Radiat. Phys. Chem. 76 404Google Scholar

    [18]

    Kagawa T, Tanuma H, Ohashi H, Nishihara K 2007 J. Phys.: Conf. Ser. 58 149Google Scholar

    [19]

    Eliav E, Kaldor U, Ishikawa Y 1994 Phys. Rev. A 49 1724Google Scholar

    [20]

    Berengut J C, Flambaum V V, Kozlov M G 2006 Phys. Rev. A 73 012504Google Scholar

    [21]

    Lysaght M, Kilbane D, Murphy N, Cummings A, Dunne P, O’Sullivan G 2005 Phys. Rev. A 72 014502Google Scholar

    [22]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [23]

    蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 物理学报 57 5100Google Scholar

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100Google Scholar

    [24]

    陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 物理学报 64 075202Google Scholar

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202Google Scholar

    [25]

    Su M G, Min Q, Cao S Q, Sun D X, Hayden P, O’Sullivan G, Dong C Z 2017 Sci. Rep. 7 45212Google Scholar

    [26]

    Schupp R, Torretti F, Meijer R A, Bayraktar M, Sheil J, Scheers J, Kurilovich D, Bayerle A, Schafgans A A, Purvis M, Eikema K S E, Witte S, Ubachs W, Hoekstra R, Versolato O O 2019 Appl. Phys. Lett. 115 124101Google Scholar

    [27]

    Zeng J, Gao C, Yuan J 2010 Phys. Rev. E 82 026409Google Scholar

    [28]

    Colgan J, Kilcrease D P, Jr. Abdallah J, Sherrill M E, Fontes C J, Hakel P, Armstrong G S J 2017 High Energy Density Phys. 23 133Google Scholar

    [29]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar

    [30]

    Sheil J, Versolato O O, Neukirch A J, Colgan J 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035002Google Scholar

    [31]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press

    [32]

    Jönson P, Gaigalas G, Bieroń, Froese Fischer C, Grant I P 2013 Comput. Phys. Commun. 184 2197Google Scholar

    [33]

    Zeng J L, Yuan J M 2006 Phys. Rev. E 74 025401(RGoogle Scholar

    [34]

    Gao C, Zeng J, Jin F, Yuan J 2013 High Energy Density Phys. 9 419Google Scholar

    [35]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022 Sci. China-Phys. Mech. Astron. 65 233011Google Scholar

    [36]

    Stewart J C, Pyatt K D Jr. 1966 Astrophys. J. 144 1203Google Scholar

    [37]

    李世昌 1992 高温辐射物理与量子辐射理论 (北京: 国防工业出版社) 第6页

    Li S C 1992 High Temperature Radiation Physics and Quantum Radaition Theory (Beijing: National Defense Industry Press) p6

    [38]

    Zeng J L, Zhao G, Yuan J M 2006 J. Quant. Spectrosc. Radiat. Transfer 102 172Google Scholar

    [39]

    Wu Z W, Tian Z Q, An Y H, Dong C Z 2021 Astrophys. J. 910 142Google Scholar

    [40]

    Kühn S, Cheung C, Oreshkina N S, Steinbrügge, Togawa M, Bernitt S, Berger L, Buck J, Hoesch M, Seltmann J, Trinter F, Keitel C H, Kozlov M G, Porsev S G, Gu M F, Porter F S, Pfeifer T, Leutenegger M A, Harman Z, Safronova M S, López-Urrutia J R C, Shah C 2022 Phys. Rev. Lett. 129 245001Google Scholar

    [41]

    Colgan J, Kilcrease D P, Magee N H, Sherrill M E, Abdallah Jr. J, Hakel P, Fontes C J, Guzik J A, Mussack K A 2016 Astrophys. J. 817 116Google Scholar

    [42]

    兰慧 2016 博士学位论文 (武汉: 华中科技大学)

    Lan H 2016 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [43]

    Hansen S B, Chung H K, Fontes C J, Ralchenko Yu, Scott H A, Stambulchik E 2020 High Energy Density Phys. 35 100693Google Scholar

    [44]

    Gao C, Zeng J, Li Y, Jin F, Yuan J 2013 High Energy Density Phys. 9 583Google Scholar

  • [1] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [3] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [4] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [5] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [6] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [7] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [8] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [9] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [10] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [11] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [12] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [13] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [14] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [15] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [16] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [17] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数. 物理学报, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [18] 黄春佳, 贺慧勇, 厉江帆, 周明. Tavis-Cummings模型中原子间偶极相互作用对场熵演化特性的影响. 物理学报, 2002, 51(5): 1049-1053. doi: 10.7498/aps.51.1049
    [19] 高云峰, 冯健, 史舒人. 二能级原子与双模场喇曼相互作用模型的腔场谱. 物理学报, 2001, 50(8): 1496-1500. doi: 10.7498/aps.50.1496
    [20] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
计量
  • 文章访问数:  3618
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-05-04
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-09-20

/

返回文章
返回